Erwin Knecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845470/publications.pdf

Version: 2024-02-01

102 papers 15,874 citations

39 h-index 100 g-index

105 all docs

105 docs citations

105 times ranked 27334 citing authors

#	Article	IF	CITATIONS
1	Erwin Knecht—the intelligent and mad, funny and grumpy man of autophagy. Autophagy, 2022, 18, 711-725.	9.1	O
2	Reactive Glia-Derived Neuroinflammation: a Novel Hallmark in Lafora Progressive Myoclonus Epilepsy That Progresses with Age. Molecular Neurobiology, 2020, 57, 1607-1621.	4.0	43
3	Regulation of the autophagic PI3KC3 complex by laforin/malin E3-ubiquitin ligase, two proteins involved in Lafora disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118613.	4.1	20
4	Degradation of altered mitochondria by autophagy is impaired in Lafora disease. FEBS Journal, 2018, 285, 2071-2090.	4.7	22
5	Lafora Disease: A Ubiquitination-Related Pathology. Cells, 2018, 7, 87.	4.1	38
6	Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathologica, 2017, 133, 283-301.	7.7	43
7	A newly distal hereditary motor neuropathy caused by a rare AIFM1 mutation. Neurogenetics, 2017, 18, 245-250.	1.4	24
8	Hydrogen Sulfide Improves Cardiomyocyte Function in a Cardiac Arrest Model. Annals of Transplantation, 2017, 22, 285-295.	0.9	7
9	Chaperonopathies: Spotlight on Hereditary Motor Neuropathies. Frontiers in Molecular Biosciences, 2016, 3, 81.	3.5	24
10	Identification of lysosomal Npc1â€binding proteins: Cathepsin D activity is regulated by NPC1. Proteomics, 2016, 16, 150-158.	2.2	14
11	Isolation of Lysosomes from Mammalian Tissues and Cultured Cells. Methods in Molecular Biology, 2016, 1449, 299-311.	0.9	12
12	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
13	Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radical Biology and Medicine, 2015, 88, 30-41.	2.9	28
14	Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy. Acta Neuropathologica, 2015, 129, 399-415.	7.7	39
15	Increased Oxidative Stress and Impaired Antioxidant Response in Lafora Disease. Molecular Neurobiology, 2015, 51, 932-946.	4.0	39
16	Regulation of Autophagy by Amino Acid Starvation Involving Ca2+., 2015,, 69-79.		2
17	Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE, 2015, 10, e0144273.	2.5	23
18	Increased oxidative stress and impaired antioxidant response in Lafora disease. Free Radical Biology and Medicine, 2014, 75, S47.	2.9	4

#	Article	IF	CITATIONS
19	The phosphatase activity of laforin is dispensable to rescue Epm2aâ^'/â^' mice from Lafora disease. Brain, 2014, 137, 806-818.	7.6	38
20	CERKL, a Retinal Disease Gene, Encodes an mRNA-Binding Protein That Localizes in Compact and Untranslated mRNPs Associated with Microtubules. PLoS ONE, 2014, 9, e87898.	2.5	30
21	Glucose induces autophagy under starvation conditions by a p38 MAPK-dependent pathway. Biochemical Journal, 2013, 449, 497-506.	3.7	73
22	Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radical Biology and Medicine, 2013, 65, 347-359.	2.9	14
23	Oxidative stress regulates the ubiquitin–proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain, 2013, 136, 891-904.	7.6	39
24	Ca ²⁺ –Sensor Proteins in the Autophagic and Endocytic Traffic. Current Protein and Peptide Science, 2013, 14, 97-110.	1.4	26
25	PTEN Increases Autophagy and Inhibits the Ubiquitin-Proteasome Pathway in Glioma Cells Independently of its Lipid Phosphatase Activity. PLoS ONE, 2013, 8, e83318.	2.5	62
26	Alterations in ROS Activity and Lysosomal pH Account for Distinct Patterns of Macroautophagy in LINCL and JNCL Fibroblasts. PLoS ONE, 2013, 8, e55526.	2.5	76
27	Annexin A5 stimulates autophagy and inhibits endocytosis. Journal of Cell Science, 2012, 125, 92-107.	2.0	57
28	New Ca ²⁺ -dependent regulators of autophagosome maturation. Communicative and Integrative Biology, 2012, 5, 308-311.	1.4	25
29	Withdrawal of Essential Amino Acids Increases Autophagy by a Pathway Involving Ca2+/Calmodulin-dependent Kinase Kinase-β (CaMKK-β). Journal of Biological Chemistry, 2012, 287, 38625-38636.	3.4	103
30	Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Human Molecular Genetics, 2012, 21, 1521-1533.	2.9	131
31	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
32	Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy, 2012, 8, 701-703.	9.1	21
33	Regulation of Autophagy by Glucose in Mammalian Cells. Cells, 2012, 1, 372-395.	4.1	69
34	Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World Journal of Biological Chemistry, 2011, 2, 232.	4.3	29
35	BRCA1 negatively regulates formation of autophagic vacuoles in MCF-7 breast cancer cells. Experimental Cell Research, 2010, 316, 2618-2629.	2.6	24
36	The Laforin–Malin Complex, Involved in Lafora Disease, Promotes the Incorporation of K63-linked Ubiquitin Chains into AMP-activated Protein Kinase β Subunits. Molecular Biology of the Cell, 2010, 21, 2578-2588.	2.1	53

#	Article	IF	Citations
37	Impaired autophagy in Lafora disease. Autophagy, 2010, 6, 991-993.	9.1	30
38	Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Human Molecular Genetics, 2010, 19, 2867-2876.	2.9	170
39	Intracellular protein degradation in mammalian cells: recent developments. Cellular and Molecular Life Sciences, 2009, 66, 2427-2443.	5.4	69
40	A769662, a novel activator of AMPâ€activated protein kinase, inhibits nonâ€proteolytic components of the 26S proteasome by an AMPKâ€independent mechanism. FEBS Letters, 2008, 582, 2650-2654.	2.8	76
41	Role of AMP-activated protein kinase in autophagy and proteasome function. Biochemical and Biophysical Research Communications, 2008, 369, 964-968.	2.1	67
42	Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification. Molecular and Cellular Biology, 2008, 28, 7514-7531.	2.3	54
43	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
44	Regulation of glycogen synthesis by the laforin–malin complex is modulated by the AMP-activated protein kinase pathway. Human Molecular Genetics, 2008, 17, 667-678.	2.9	128
45	Dynamics of an F-actin aggresome generated by the actin-stabilizing toxin jasplakinolide. Journal of Cell Science, 2008, 121, 1415-1425.	2.0	68
46	Clearance of a Hirano body-like F-actin aggresome generated by jasplakinolide. Autophagy, 2008, 4, 717-720.	9.1	11
47	Tissue-specific Autophagy Alterations and Increased Tumorigenesis in Mice Deficient in Atg4C/Autophagin-3. Journal of Biological Chemistry, 2007, 282, 18573-18583.	3.4	360
48	Efficient selection of silenced primary cells by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 599-604.	1.5	3
49	Regulation of various proteolytic pathways by insulin and amino acids in human fibroblasts. FEBS Letters, 2007, 581, 3415-3421.	2.8	15
50	A single point mutation in the low-density lipoprotein receptor switches the degradation of its mature protein from the proteasome to the lysosome. International Journal of Biochemistry and Cell Biology, 2006, 38, 1340-1351.	2.8	13
51	Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Molecular Microbiology, 2005, 56, 836-844.	2.5	256
52	Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology (United Kingdom), 2005, 151, 2465-2475.	1.8	243
53	Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient Fibroblasts. Molecular Biology of the Cell, 2004, 15, 3132-3145.	2.1	241
54	Activation of Chaperone-mediated Autophagy during Oxidative Stress. Molecular Biology of the Cell, 2004, 15, 4829-4840.	2.1	546

#	Article	lF	Citations
55	Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions. International Journal of Biochemistry and Cell Biology, 2003, 35, 651-664.	2.8	65
56	Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochemical Journal, 2003, 375, 75-86.	3.7	152
57	The GTPase Activity and C-terminal Cysteine of the Escherichia coli MnmE Protein Are Essential for Its tRNA Modifying Function. Journal of Biological Chemistry, 2003, 278, 28378-28387.	3.4	53
58	Expression of the Biofilm-Associated Protein Interferes with Host Protein Receptors of Staphylococcus aureus and Alters the Infective Process. Infection and Immunity, 2002, 70, 3180-3186.	2.2	113
59	Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochemical Journal, 2000, 346, 155.	3.7	99
60	Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochemical Journal, 2000, 346, 155-161.	3.7	269
61	Electrothermal Atomic Absorption Spectrometric Diagnosis of Familial Hypercholesterolemia. Analytical Chemistry, 2000, 72, 2406-2413.	6.5	16
62	Import of a Cytosolic Protein into Lysosomes by Chaperone-mediated Autophagy Depends on Its Folding State. Journal of Biological Chemistry, 2000, 275, 27447-27456.	3.4	164
63	The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO Journal, 1999, 18, 7063-7076.	7.8	94
64	A Rapid Procedure Suitable to Assess Quantitatively the Endocytosis of Colloidal Gold and Its Conjugates in Cultured Cells. Journal of Histochemistry and Cytochemistry, 1998, 46, 1199-1201.	2.5	21
65	Pathways for the Degradation of Intracellular Proteins Within Lysosomes in Higher Eukaryotes. Advances in Molecular and Cell Biology, 1998, 27, 201-234.	0.1	7
66	A Population of Rat Liver Lysosomes Responsible for the Selective Uptake and Degradation of Cytosolic Proteins. Journal of Biological Chemistry, 1997, 272, 5606-5615.	3.4	256
67	Acidic cytosolic proteins are preferentially imported into rat liver lysosomes. Electrophoresis, 1997, 18, 2638-2644.	2.4	5
68	Selective uptake and degradation of c-Fos and v-Fos by rat liver lysosomes. FEBS Letters, 1996, 390, 47-52.	2.8	43
69	Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochemical Journal, 1996, 316, 401-407.	3.7	163
70	Use of Inductively Coupled Plasma–Mass Spectrometry for the Quantitation of the Binding and Uptake of Colloidal Gold–Low-Density Lipoprotein Conjugates by Cultured Cells. Analytical Biochemistry, 1996, 243, 210-217.	2.4	16
71	Degradation of Proteasomes by Lysosomes in Rat Liver. FEBS Journal, 1995, 227, 792-800.	0.2	166
72	Proteasome location. Current Biology, 1993, 3, 127-129.	3.9	36

#	Article	IF	CITATIONS
73	Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. Journal of Biological Chemistry, 1993, 268, 10463-70.	3.4	119
74	Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells Journal of Histochemistry and Cytochemistry, 1992, 40, 1165-1172.	2.5	139
75	Immunocytochemical localization of the multicatalytic proteinase in rat liver and in L-132 cells. Biochemical Society Transactions, 1991, 19, 293S-293S.	3.4	3
76	Endocytosis of liposomes containing lysosomal proteins increases intracellular protein degradation in growing L-132 cells. FEBS Journal, 1990, 188, 99-109.	0.2	1
77	Levels of carbamoyl phosphate synthetase I in livers of young and old rats assessed by activity and immunoassays and by electron microscopic immunogold procedures Journal of Histochemistry and Cytochemistry, 1990, 38, 371-376.	2.5	9
78	Cooperation of lysosomes and inner mitochondrial membrane in the degradation of carbamoyl phosphate synthetase and other proteins. Biochimica Et Biophysica Acta - General Subjects, 1990, 1034, 268-274.	2.4	1
79	Effects of centrifugation on the degradation of short-lived proteins in exponentially growing cultured cells. Experimental Cell Research, 1989, 182, 307-320.	2.6	2
80	The mitochondrial probe rhodamine 123 inhibits in isolated hepatocytes the degradation of short-lived proteins. FEBS Letters, 1988, 233, 259-262.	2.8	5
81	Autophagy of mitochondria in rat liver assessed by immunogold procedures Journal of Histochemistry and Cytochemistry, 1988, 36, 1433-1440.	2.5	19
82	Immunohistochemical localization of glutamate dehydrogenase in rat liver: plasticity of distribution during development and with hormone treatment Journal of Histochemistry and Cytochemistry, 1988, 36, 41-47.	2.5	31
83	Monoclonal antibodies used in immunocytochemical localization by electron microscopy of carbamoyl phosphate synthetase I in liver from rats fed high-protein diets Journal of Histochemistry and Cytochemistry, 1987, 35, 897-907.	2.5	5
84	Differences in the half-lives of some mitochondrial rat liver enzymes may derive partially from hepatocyte heterogeneity. FEBS Letters, 1987, 224, 182-186.	2.8	24
85	2,3-Bisphosphoglycerate inhibits ATP-stimulated proteolysis. FEBS Letters, 1987, 221, 231-235.	2.8	3
86	Analysis by flow cytometry of rat hepatocytes from different acinar zones. Biochemical and Biophysical Research Communications, 1987, 147, 535-541.	2.1	19
87	2,3-bisphosphoglycerate protects mitochondrial and cytosolic proteins from proteolytic inactivation. Biochemical and Biophysical Research Communications, 1987, 142, 680-687.	2.1	7
88	The reduction-oxidation status may influence the degradation of glyceraldehyde-3-phosphate dehydrogenase. FEBS Letters, 1986, 206, 339-342.	2.8	9
89	Turnover of rat liver ornithine transcarbamylase. FEBS Letters, 1986, 208, 427-430.	2.8	15
90	Electron microscopic localization of glutamate dehydrogenase in rat liver mitochondria by an immunogold procedure and monoclonal and polyclonal antibodies Journal of Histochemistry and Cytochemistry, 1986, 34, 913-922.	2.5	29

#	Article	lF	CITATION
91	Regulatory mechanisms of intracellular proteolysis in mammalian cells. Biomedica Biochimica Acta, 1986, 45, 1575-83.	0.1	1
92	Regulation of Mitochondrial Protein Concentration: A Plausible Model Which May Permit Assessing Protein Turnover. Current Topics in Cellular Regulation, 1985, 27, 387-396.	9.6	29
93	Homogeneity among mitochondria revealed by a constant proportion of their enzymes. Histochemistry, 1984, 80, 359-362.	1.9	6
94	Regulation of lysosomal autophagy in transformed and non-transformed mouse fibroblasts under several growth conditions*1. Experimental Cell Research, 1984, 154, 224-232.	2.6	59
95	The Precursor of Rat Liver Mitochondrial Glutamate Dehydrogenase has Enzymatic Activity. FEBS Journal, 1983, 133, 641-644.	0.2	17
96	Exit of proteins and fragments thereof from mitochondria is accelerated by the import of cytosolic synthesized proteins. Biochemical and Biophysical Research Communications, 1983, 113, 199-204.	2.1	11
97	Degradation of short-lived proteins is decreased by centrifugation. FEBS Letters, 1982, 150, 473-476.	2.8	9
98	A Comparative Study of Complex Mitochondrial DNA in Human Lymphocytes Transformed by Epstein-Barr Virus and PHA. Acta Haematologica, 1982, 68, 96-104.	1.4	4
99	Protein degradation in human T-lymphocytes. Experientia, 1981, 37, 456-457.	1.2	5
100	Effects of different fixative solutions on labeling of Concanavalin-A receptor sites in human T-lymphocytes. Histochemistry, 1981, 71, 559-565.	1.9	13
101	Fate of proteins synthesized in mitochondria of cultured mammalian cells revealed by electron microscope radioautography. Experimental Cell Research, 1980, 125, 191-199.	2.6	28
102	Immunoferritin location of carbamoyl phosphate synthetase in rat liver Journal of Histochemistry and Cytochemistry, 1979, 27, 975-981.	2.5	25