
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of Carbonic Anhydrases Activity in the Hippocampus or Prefrontal Cortex Differentially Affects Social Recognition Memory in Rats. Neuroscience, 2022, 497, 184-195.	2.3	12
2	Involvement of medial prefrontal cortex canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways in contextual fear memory in male rats. Behavioural Brain Research, 2022, 430, 113948.	2.2	5
3	Participation of Hippocampal 5-HT5A, 5-HT6 and 5-HT7 Serotonin Receptors on the Consolidation of Social Recognition Memory. Neuroscience, 2022, 497, 171-183.	2.3	3
4	Strength training or green tea prevent memory deficits in a β-amyloid peptide-mediated Alzheimer's disease model. Experimental Gerontology, 2021, 143, 111186.	2.8	9
5	Inhibition of PACAP/PAC1/VPAC2 signaling impairs the consolidation of social recognition memory and nitric oxide prevents this deficit. Neurobiology of Learning and Memory, 2021, 180, 107423.	1.9	4
6	PKMζ Maintains Remote Contextual Fear Memory by Inhibiting GluA2-Dependent AMPA Receptor Endocytosis in the Prelimbic Cortex. Neuroscience, 2021, , .	2.3	3
7	Neuronal histamine and the memory of emotionally salient events. British Journal of Pharmacology, 2020, 177, 557-569.	5.4	22
8	Brain histamine modulates recognition memory: possible implications in major cognitive disorders. British Journal of Pharmacology, 2020, 177, 539-556.	5.4	36
9	Catecholaminergic hippocampal activation is necessary for object recognition memory persistence induced by one-single physical exercise session. Behavioural Brain Research, 2020, 379, 112356.	2.2	10
10	Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiology of Learning and Memory, 2020, 168, 107153.	1.9	24
11	The role of carbonic anhydrases in extinction of contextual fear memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16000-16008.	7.1	33
12	Molecular Mechanisms in Hippocampus Involved on Object Recognition Memory Consolidation and Reconsolidation. Neuroscience, 2020, 435, 112-123.	2.3	19
13	The effect of intentionality on verbal memory assessment over days. Dementia E Neuropsychologia, 2020, 14, 366-371.	0.8	Ο
14	Social support favors extinction and impairs acquisition of both short- and long-term contextual fear conditioning memory. Neuroscience Letters, 2019, 712, 134505.	2.1	11
15	The blockade of the serotoninergic receptors 5-HT5A, 5-HT6 and 5-HT7 in the basolateral amygdala, but not in the hippocampus facilitate the extinction of fear memory. Behavioural Brain Research, 2019, 372, 112055.	2.2	14
16	Noradrenergic and dopaminergic involvement in novelty modulation of aversive memory generalization of adult rats. Behavioural Brain Research, 2019, 371, 111991.	2.2	8
17	Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9644-9651.	7.1	79
18	Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer's disease model. Physiology and Behavior, 2019, 206, 206-212.	2.1	17

#	Article	IF	CITATIONS
19	Extinction learning with social support depends on protein synthesis in prefrontal cortex but not hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1765-1769.	7.1	9
20	Novelty exposure hinders aversive memory generalization and depends on hippocampal protein synthesis. Behavioural Brain Research, 2019, 359, 89-94.	2.2	3
21	Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2403-E2409.	7.1	72
22	Methylphenidate induces state-dependency of social recognition learning: Central components. Neurobiology of Learning and Memory, 2018, 149, 77-83.	1.9	6
23	Can an aversive, extinction-resistant memory trigger impairments in walking adaptability? An experimental study using adult rats. Neuroscience Letters, 2018, 665, 224-228.	2.1	5
24	One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms. Behavioural Brain Research, 2017, 329, 120-126.	2.2	26
25	Methylprednisolone as a memory enhancer in rats: Effects on aversive memory, long-term potentiation and calcium influx. Brain Research, 2017, 1670, 44-51.	2.2	5
26	Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behavioural Brain Research, 2017, 326, 303-306.	2.2	26
27	Histamine regulates memory consolidation. Neurobiology of Learning and Memory, 2017, 145, 1-6.	1.9	18
28	Modulation of the storage of social recognition memory by neurotransmitter systems in the insular cortex. Behavioural Brain Research, 2017, 334, 129-134.	2.2	33
29	Behaviorally Induced Synaptic Tagging. , 2017, , 611-619.		0
30	Memory retrieval of inhibitory avoidance requires histamine H ₁ receptor activation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2714-20.	7.1	34
31	Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4914-9.	7.1	67
32	Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 607-618.	3.2	8
33	Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence. Neurobiology of Learning and Memory, 2016, 127, 84-92.	1.9	56
34	Fear Memory. Physiological Reviews, 2016, 96, 695-750.	28.8	331
35	Modulation of Memory Consolidation, Retrieval and Extinction by Brain Histamine. Receptors, 2016, , 327-340.	0.2	0
36	Extinction learning, which consists of the inhibition of retrieval, can be learned without retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E230-3.	7.1	38

#	Article	IF	CITATIONS
37	The relationship between protein synthesis and protein degradation in object recognition memory. Behavioural Brain Research, 2015, 294, 17-24.	2.2	28
38	Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2536-42.	7.1	41
39	The Art of Forgetting. , 2015, , 7-60.		2
40	Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1652-8.	7.1	63
41	Histamine acting on the basolateral amygdala reverts the impairment of aversive memory of rats submitted to neonatal maternal deprivation. Behavioural Brain Research, 2015, 278, 83-89.	2.2	9
42	Fear extinction can be made state-dependent on peripheral epinephrine: Role of norepinephrine in the nucleus tractus solitarius. Neurobiology of Learning and Memory, 2014, 113, 55-61.	1.9	29
43	Modulation of the extinction of fear learning. Brain Research Bulletin, 2014, 105, 61-69.	3.0	37
44	Hippocampal molecular mechanisms involved in the enhancement of fear extinction caused by exposure to novelty. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4572-4577.	7.1	88
45	The learning of fear extinction. Neuroscience and Biobehavioral Reviews, 2014, 47, 670-683.	6.1	105
46	Effects of green tea and physical exercise on memory impairments associated with aging. Neurochemistry International, 2014, 78, 53-60.	3.8	30
47	Memory deficits and oxidative stress in cerebral ischemia–reperfusion: Neuroprotective role of physical exercise and green tea supplementation. Neurobiology of Learning and Memory, 2014, 114, 242-250.	1.9	53
48	Chronic exposure to low mercury chloride concentration induces object recognition and aversive memories deficits in rats. International Journal of Developmental Neuroscience, 2013, 31, 468-472.	1.6	20
49	The Nucleus of the Solitary Tract→Nucleus Paragigantocellularis→Locus Coeruleus→CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiology of Learning and Memory, 2013, 100, 56-63.	1.9	109
50	Behavioral tagging of extinction learning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1071-1076.	7.1	97
51	The role of histamine receptors in the consolidation of object recognition memory. Neurobiology of Learning and Memory, 2013, 103, 64-71.	1.9	47
52	Decreased acetylcholine release delays the consolidation of object recognition memory. Behavioural Brain Research, 2013, 238, 62-68.	2.2	26
53	Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. International Journal of Neuropsychopharmacology, 2013, 16, 1539-1545.	2.1	28
54	TREM2, Frontotemporal Dementia–Like Disease, Nasu-Hakola Disease, and Alzheimer Dementia: A Chicken and Egg Problem?. JAMA Neurology, 2013, 70, 805.	9.0	7

#	Article	IF	CITATIONS
55	Memory reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and CaMKII functions regulating protein turnover in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6566-6570.	7.1	48
56	New frontiers in the study of memory mechanisms. Revista Brasileira De Psiquiatria, 2013, 35, 173-177.	1.7	10
57	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2013, , 239-247.		0
58	Protein Synthesis and Memory. , 2013, , 1-4.		0
59	Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17651-17656.	7.1	57
60	Posterior parietal cortex and long-term memory: some data from laboratory animals. Frontiers in Integrative Neuroscience, 2012, 6, 8.	2.1	20
61	Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation. Neurobiology of Learning and Memory, 2012, 97, 54-58.	1.9	21
62	Both the dorsal hippocampus and the dorsolateral striatum are needed for rat navigation in the Morris water maze. Behavioural Brain Research, 2012, 226, 171-178.	2.2	54
63	Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behavioural Brain Research, 2012, 232, 210-216.	2.2	111
64	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2012, , 205-213.		0
65	Memory Persistence. , 2012, , 2172-2173.		0
66	Histamine facilitates consolidation of fear extinction. International Journal of Neuropsychopharmacology, 2011, 14, 1209-1217.	2.1	41
67	Treatment of fear memories: interactions between extinction and reconsolidation. Anais Da Academia Brasileira De Ciencias, 2011, 83, 1363-1372.	0.8	13
68	The effect of cannabidiol on maximal electroshock seizures in rats. Journal of Pharmacy and Pharmacology, 2011, 25, 916-917.	2.4	48
69	Brain interactions between processes triggered by memory retrieval and their use in the treatment of fear memories. Future Neurology, 2011, 6, 307-309.	0.5	2
70	Brain Interactions between Extinction and Reconsolidation in the Treatment of Fear Memories. Neuroscience and Medicine, 2011, 02, 232-238.	0.2	1
71	Topiramate diminishes fear memory consolidation and extinguishes conditioned fear in rats. Journal of Psychiatry and Neuroscience, 2011, 36, 250-255.	2.4	5
72	βâ€Adrenergic receptors link NO/sGC/PKG signaling to BDNF expression during the consolidation of object recognition longâ€ŧerm memory. Hippocampus, 2010, 20, 672-683.	1.9	59

IVAN IZQUIERDO

#	Article	IF	CITATIONS
73	Long-term memory persistence. Future Neurology, 2010, 5, 911-917.	0.5	Ο
74	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. Neurotoxicity Research, 2010, 18, 377-385.	2.7	76
75	Effects of intrahippocampal administration of the phosphatase inhibitor okadaic acid: Dual effects on memory formation. Dementia E Neuropsychologia, 2010, 4, 23-27.	0.8	2
76	Plastic modifications induced by object recognition memory processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2652-2657.	7.1	220
77	Retrieval induces reconsolidation of fear extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21801-21805.	7.1	36
78	Molecular mechanisms in hippocampus and basolateral amygdala but not in parietal or cingulate cortex are involved in extinction of one-trial avoidance learning. Neurobiology of Learning and Memory, 2010, 94, 285-291.	1.9	19
79	The Vesicular Acetylcholine Transporter Is Required for Neuromuscular Development and Function. Molecular and Cellular Biology, 2009, 29, 5238-5250.	2.3	105
80	On the requirement of nitric oxide signaling in the amygdala for consolidation of inhibitory avoidance memory. Neurobiology of Learning and Memory, 2009, 91, 266-272.	1.9	18
81	Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory. Neurobiology of Learning and Memory, 2009, 91, 466-472.	1.9	39
82	Physical exercise can reverse the deficit in fear memory induced by maternal deprivation. Neurobiology of Learning and Memory, 2009, 92, 364-369.	1.9	64
83	Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine. International Journal of Developmental Neuroscience, 2009, 27, 59-64.	1.6	71
84	Dopamine Controls Persistence of Long-Term Memory Storage. Science, 2009, 325, 1017-1020.	12.6	384
85	BDNF Activates mTOR to Regulate GluR1 Expression Required for Memory Formation. PLoS ONE, 2009, 4, e6007.	2.5	230
86	Different Effect of High Fat Diet and Physical Exercise in the Hippocampal Signaling. Neurochemical Research, 2008, 33, 880-885.	3.3	22
87	The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotoxicity Research, 2008, 14, 273-294.	2.7	34
88	Reconsolidation and the fate of consolidated memories. Neurotoxicity Research, 2008, 14, 353-358.	2.7	13
89	Time-dependent behavioral recovery after sepsis in rats. Intensive Care Medicine, 2008, 34, 1724-1731.	8.2	93
90	Inhibition of mRNA synthesis in the hippocampus impairs consolidation and reconsolidation of spatial memory. Hippocampus, 2008, 18, 29-39.	1.9	50

#	Article	IF	CITATIONS
91	On the participation of mTOR in recognition memory. Neurobiology of Learning and Memory, 2008, 89, 338-351.	1.9	103
92	Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiology of Learning and Memory, 2008, 90, 374-381.	1.9	81
93	Duration of environmental enrichment influences the magnitude and persistence of its behavioral effects on mice. Physiology and Behavior, 2008, 93, 388-394.	2.1	52
94	Reviews: BDNF and Memory Formation and Storage. Neuroscientist, 2008, 14, 147-156.	3.5	260
95	ERK1/2 and CaMKII-mediated events in memory formation: Is 5HT regulation involved?. Behavioural Brain Research, 2008, 195, 120-128.	2.2	35
96	Do memories consolidate to persist or do they persist to consolidate?. Behavioural Brain Research, 2008, 192, 61-69.	2.2	58
97	Physiology of the Prion Protein. Physiological Reviews, 2008, 88, 673-728.	28.8	523
98	Memory-enhancing treatments reverse the impairment of inhibitory avoidance retention in sepsis-surviving rats. Critical Care, 2008, 12, R133.	5.8	17
99	Age-dependent and age-independent human memory persistence is enhanced by delayed posttraining methylphenidate administration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19504-19507.	7.1	30
100	Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10279-10284.	7.1	47
101	BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2711-2716.	7.1	559
102	Extinction learning: neurological features, therapeutic applications and the effect of aging. Future Neurology, 2008, 3, 133-140.	0.5	4
103	Emotional memory in bipolar disorder. British Journal of Psychiatry, 2008, 192, 458-463.	2.8	26
104	Effects of acute and chronic physical exercise and stress on different types of memory in rats. Anais Da Academia Brasileira De Ciencias, 2008, 80, 301-309.	0.8	56
105	The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. Anais Da Academia Brasileira De Ciencias, 2008, 80, 115-127.	0.8	33
106	The Role of the Entorhinal Cortex in Extinction: Influences of Aging. Neural Plasticity, 2008, 2008, 1-8.	2.2	16
107	Clozapine and Olanzapine but not Risperidone Impair the Pre-Frontal Striatal System in relation to Egocentric Spatial Orientation in a Y-Maze. Current Neurovascular Research, 2007, 4, 235-239.	1.1	6
108	Effects of an Acute Treatment with L-Thyroxine on Memory, Habituation, Danger Avoidance, and on Na+, K+-ATPase activity in Rat Brain. Current Neurovascular Research, 2007, 4, 259-267.	1.1	6

#	Article	lF	CITATIONS
109	Effects of Thyroid Hormones on Memory and on Na+, K+-ATPase Activity in Rat Brain. Current Neurovascular Research, 2007, 4, 184-193.	1.1	16
110	Inhibition of c-Jun N-terminal kinase in the CA1 region of the dorsal hippocampus blocks extinction of inhibitory avoidance memory. Behavioural Pharmacology, 2007, 18, 483-489.	1.7	15
111	Persistence of Long-Term Memory Storage Requires a Late Protein Synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron, 2007, 53, 261-277.	8.1	550
112	mTOR signaling in the hippocampus is necessary for memory formation. Neurobiology of Learning and Memory, 2007, 87, 303-307.	1.9	163
113	A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiology of Learning and Memory, 2007, 88, 160-166.	1.9	46
114	Temporary inactivation of the dorsal hippocampus induces a transient impairment in retrieval of aversive memory. Behavioural Brain Research, 2007, 180, 113-118.	2.2	39
115	Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neuroscience Letters, 2007, 413, 21-24.	2.1	17
116	On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learning and Memory, 2007, 14, 36-46.	1.3	235
117	Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiology of Disease, 2007, 26, 282-290.	4.4	77
118	Imipramine reverses the depressive symptoms in sepsis survivor rats. Intensive Care Medicine, 2007, 33, 2165-2167.	8.2	23
119	Effect of Radicicol Infusion on the Src Tyrosine Kinase Activity of Rat Hippocampus before and after Training in an Inhibitory Avoidance Task. Neurochemical Research, 2007, 32, 1150-1155.	3.3	1
120	The extinction of conditioned fear: structural and molecular basis and therapeutic use. Revista Brasileira De Psiquiatria, 2007, 29, 80-85.	1.7	29
121	A new spatial orientation memory test: Evaluation in patients with mild Alzheimer's disease and in patients with operated and unoperated mesial temporal lobe epilepsy. European Journal of Psychiatry, 2007, 21, .	1.3	2
122	Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learning and Memory, 2006, 13, 431-440.	1.3	98
123	Angiotensin II disrupts inhibitory avoidance memory retrieval. Hormones and Behavior, 2006, 50, 308-313.	2.1	73
124	Mice Deficient for the Vesicular Acetylcholine Transporter Are Myasthenic and Have Deficits in Object and Social Recognition. Neuron, 2006, 51, 601-612.	8.1	208
125	The entorhinal cortex plays a role in extinction. Neurobiology of Learning and Memory, 2006, 85, 192-197.	1.9	43
126	Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism. Neurobiology of Learning and Memory, 2006, 86, 100-106.	1.9	61

#	Article	IF	CITATIONS
127	Different molecular cascades in different sites of the brain control memory consolidation. Trends in Neurosciences, 2006, 29, 496-505.	8.6	404
128	A link between the hippocampal and the striatal memory systems of the brain. Anais Da Academia Brasileira De Ciencias, 2006, 78, 515-523.	0.8	29
129	A role for hippocampal gastrin-releasing peptide receptors in extinction of aversive memory. NeuroReport, 2006, 17, 935-939.	1.2	23
130	The interaction between prion protein and laminin modulates memory consolidation. European Journal of Neuroscience, 2006, 24, 3255-3264.	2.6	66
131	Early Activation of Extracellular Signal-Regulated Kinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation of a Fear-Motivated Learning. Cellular and Molecular Neurobiology, 2006, 26, 81-6.	3.3	59
132	Early Activation of Extracellular Signal-Regulated Kinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation of a Fear-Motivated Learning. Cellular and Molecular Neurobiology, 2006, 26, 987-1000.	3.3	28
133	Acute treatment with the antidepressants bupropion and sertraline do not influence memory retrieval in man. European Archives of Psychiatry and Clinical Neuroscience, 2006, 256, 320-325.	3.2	13
134	The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotoxicity Research, 2006, 10, 113-121.	2.7	60
135	Retinol induces the ERK1/2-dependent phosphorylation of CREB through a pathway involving the generation of reactive oxygen species in cultured Sertoli cells. Cellular Signalling, 2006, 18, 1685-1694.	3.6	42
136	Role of cellular prion protein on LTP expression in aged mice. Brain Research, 2006, 1097, 11-18.	2.2	36
137	Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacology Biochemistry and Behavior, 2006, 84, 229-234.	2.9	131
138	Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacology Biochemistry and Behavior, 2006, 85, 148-154.	2.9	74
139	Freud e a neurobiologia da memória. Revista De Psiquiatria Do Rio Grande Do Sul, 2006, 28, 243-244.	0.3	2
140	A arte de esquecer. Estudos Avancados, 2006, 20, 289-296.	0.5	11
141	Inhibition of PKC in basolateral amygdala and posterior parietal cortex impairs consolidation of inhibitory avoidance memory. Pharmacology Biochemistry and Behavior, 2005, 80, 63-67.	2.9	24
142	Extinction and reacquisition of a fear-motivated memory require activity of the Src family of tyrosine kinases in the CA1 region of the hippocampus. Pharmacology Biochemistry and Behavior, 2005, 81, 139-145.	2.9	34
143	Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. Journal of Neuroscience Research, 2005, 79, 248-253.	2.9	52
144	Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology, 2005, 179, 529-535.	3.1	79

#	Article	IF	CITATIONS
145	Short- and Long-term Memory are Differentialy Modulated by Hippocampal Nerve Growth Factor and Fibroblast Growth Factor. Neurochemical Research, 2005, 30, 185-190.	3.3	9
146	Pretraining but not Preexposure to the Task Apparatus Prevents the Memory Impairment Induced by Blockade of Protein Synthesis, PKA or MAP Kinase in Rats. Neurochemical Research, 2005, 30, 61-67.	3.3	14
147	Retrieval and the Extinction of Memory. Cellular and Molecular Neurobiology, 2005, 25, 465-474.	3.3	53
148	Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learning and Memory, 2005, 12, 504-510.	1.3	112
149	Altered behavioural response to acute stress in mice lacking cellular prion protein. Behavioural Brain Research, 2005, 162, 173-181.	2.2	43
150	Learning twice is different from learning once and from learning more. Neuroscience, 2005, 132, 273-279.	2.3	30
151	Modulation of working, short- and long-term memory by nicotinic receptors in the basolateral amygdala in rats. Neurobiology of Learning and Memory, 2005, 83, 113-118.	1.9	49
152	Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiology of Learning and Memory, 2005, 83, 217-223.	1.9	58
153	Relationship between short- and long-term memory and short- and long-term extinction. Neurobiology of Learning and Memory, 2005, 84, 25-32.	1.9	41
154	Effect of lyophilised berries on memory, anxiety and locomotion in adult rats. Pharmacological Research, 2005, 52, 457-462.	7.1	112
155	Differential effects of acute diazepam on emotional and neutral memory tasks in acutely hospitalized depressed patients. Neuropsychiatric Disease and Treatment, 2005, 1, 269-75.	2.2	3
156	Desenvolvimento da versão em português da Escala de Avaliação de Mania de Bech-Rafaelsen (EAM-BR). Revista De Psiquiatria Do Rio Grande Do Sul, 2004, 26, 30-38.	0.3	0
157	The transition from memory retrieval to extinction. Anais Da Academia Brasileira De Ciencias, 2004, 76, 573-582.	0.8	17
158	Pharmacological Findings on the Biochemical Bases of Memory Processes: A General View. Neural Plasticity, 2004, 11, 159-189.	2.2	42
159	Role of the Hippocampus and Amygdala in the Extinction of Fear- Motivated Learning. Current Neurovascular Research, 2004, 1, 55-60.	1.1	54
160	Bombesin/gastrin-releasing peptide receptors in the basolateral amygdala regulate memory consolidation. European Journal of Neuroscience, 2004, 19, 1041-1045.	2.6	59
161	No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Research, 2004, 1014, 177-183.	2.2	33
162	Interactions between anandamide-induced anterograde amnesia and post-training memory modulatory systems. Brain Research, 2004, 1016, 66-71.	2.2	26

#	Article	IF	CITATIONS
163	The inhibition of acquired fear. Neurotoxicity Research, 2004, 6, 175-188.	2.7	34
164	Gene expression during memory formation. Neurotoxicity Research, 2004, 6, 189-203.	2.7	34
165	Inhibitory Avoidance Task Reveals Differences in Ectonucleotidase Activities between Male and Female Rats. Neurochemical Research, 2004, 29, 2231-2237.	3.3	14
166	NEUROSCIENCE: Zif and the Survival of Memory. Science, 2004, 304, 829-830.	12.6	47
167	Retrieval Does Not Induce Reconsolidation of Inhibitory Avoidance Memory. Learning and Memory, 2004, 11, 572-578.	1.3	104
168	Protein synthesis, PKA, and MAP kinase are differentially involved in short- and long-term memory in rats. Behavioural Brain Research, 2004, 154, 339-343.	2.2	69
169	Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiology of Learning and Memory, 2004, 81, 137-143.	1.9	34
170	Different time course for the memory facilitating effect of bicuculline in hippocampus, entorhinal cortex, and posterior parietal cortex of rats. Neurobiology of Learning and Memory, 2004, 82, 52-56.	1.9	46
171	One-trial aversive learning induces late changes in hippocampal CaMKIIα, Homer 1a, Syntaxin 1a and ERK2 protein levels. Molecular Brain Research, 2004, 132, 1-12.	2.3	51
172	Retrograde Amnesia Induced by Drugs Acting on Different Molecular Systems Behavioral Neuroscience, 2004, 118, 563-568.	1.2	61
173	Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Research, 2003, 977, 97-102.	2.2	93
174	The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus, 2003, 13, 53-58.	1.9	206
175	Participation of CaMKII in Neuronal Plasticity and Memory Formation. ChemInform, 2003, 34, no.	0.0	0
176	Inhibition of hippocampal Jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. European Journal of Neuroscience, 2003, 17, 897-902.	2.6	98
177	Exposure to novelty enhances retrieval of very remote memory in rats. Neurobiology of Learning and Memory, 2003, 79, 51-56.	1.9	32
178	Differential effects of emotional arousal in short- and long-term memory in healthy adults. Neurobiology of Learning and Memory, 2003, 79, 132-135.	1.9	76
179	Memory extinction requires gene expression in rat hippocampus. Neurobiology of Learning and Memory, 2003, 79, 199-203.	1.9	78
180	Effects of Gabapentin on Anxiety Induced by Simulated Public Speaking. Journal of Psychopharmacology, 2003, 17, 184-188.	4.0	40

#	Article	IF	CITATIONS
181	Cellular prion protein ablation impairs behavior as a function of age. NeuroReport, 2003, 14, 1375-1379.	1.2	38
182	Cellular prion protein ablation impairs behavior as a function of age. NeuroReport, 2003, 14, 1375-1379.	1.2	64
183	Memory formation requires p38MAPK activity in the rat hippocampus. NeuroReport, 2003, 14, 1989-1992.	1.2	30
184	Inhibition of mRNA and Protein Synthesis in the CA1 Region of the Dorsal Hippocampus Blocks Reinstallment of an Extinguished Conditioned Fear Response. Journal of Neuroscience, 2003, 23, 737-741.	3.6	80
185	Development and application of the mania rating guide (MRC). Revista Brasileira De Psiquiatria, 2003, 25, 91-95.	1.7	5
186	Pharmacological Findings Contribute to the Understanding of the Main Physiological Mechanisms of Memory Retrieval. CNS and Neurological Disorders, 2003, 2, 81-94.	4.3	35
187	Pharmacological Studies of the Molecular Basis of Memory Extinction. Current Neuropharmacology, 2003, 1, 89-98.	2.9	5
188	Behavioural effects of acute phenylalanine and tyrosine depletion in healthy male volunteers. Journal of Psychopharmacology, 2002, 16, 51-55.	4.0	27
189	Aversive Experiences Are Associated with a Rapid and Transient Activation of ERKs in the Rat Hippocampus Neurobiology of Learning and Memory, 2002, 77, 119-124.	1.9	62
190	Cellular prion protein: on the road for functions. FEBS Letters, 2002, 512, 25-28.	2.8	123
191	Decreased hyperlocomotion induced by MK-801, but not amphetamine and caffeine in mice lacking cellular prion protein (PrPC). Molecular Brain Research, 2002, 107, 190-194.	2.3	16
192	Repetition of memories lost or never acquired. Trends in Neurosciences, 2002, 25, 77-78.	8.6	3
193	Effects of inhibitory avoidance training and/or isolated foot-shock on ectonucleotidase activities in synaptosomes of the anterior and posterior cingulate cortex and the medial precentral area of adult rats. Behavioural Brain Research, 2002, 128, 121-127.	2.2	23
194	Two Time Periods of Hippocampal mRNA Synthesis Are Required for Memory Consolidation of Fear-Motivated Learning. Journal of Neuroscience, 2002, 22, 6781-6789.	3.6	292
195	Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats. European Journal of Pharmacology, 2002, 437, 151-154.	3.5	40
196	Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine-semiquinone, in rats. European Journal of Pharmacology, 2002, 443, 105-111.	3.5	29
197	Intrahippocampal infusion of ebselen impairs retention of an inhibitory avoidance task in rats. European Journal of Pharmacology, 2002, 451, 165-169.	3.5	10
198	BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus, 2002, 12, 551-560.	1.9	298

#	Article	IF	CITATIONS
199	Molecular pharmacological dissection of short- and long-term memory. Cellular and Molecular Neurobiology, 2002, 22, 269-287.	3.3	176
200	Participation of CaMKII in neuronal plasticity and memory formation. Cellular and Molecular Neurobiology, 2002, 22, 259-267.	3.3	56
201	Molecular mechanisms of memory retrieval. Neurochemical Research, 2002, 27, 1491-1498.	3.3	59
202	Signaling mechanisms mediating BDNF modulation of memory formation in vivo in the hippocampus. Cellular and Molecular Neurobiology, 2002, 22, 663-674.	3.3	98
203	Memory retrieval and its lasting consequences. Neurotoxicity Research, 2002, 4, 573-593.	2.7	20
204	Changes in cortical and hippocampal ectonucleotidase activities in mice lacking cellular prion protein. Neuroscience Letters, 2001, 301, 72-74.	2.1	18
205	Simultaneous modulation of retrieval by dopaminergic D1, Î ² -noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat. Behavioural Brain Research, 2001, 124, 1-7.	2.2	115
206	Facilitation and inhibition of retrieval in two aversive tasks in rats by intrahippocampal infusion of agonists of specific glutamate metabotropic receptor subtypes. Psychopharmacology, 2001, 156, 397-401.	3.1	20
207	The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. European Journal of Neuroscience, 2001, 14, 1820-1826.	2.6	203
208	Neonatal iron exposure induces oxidative stress in adult Wistar rat. Developmental Brain Research, 2001, 130, 109-114.	1.7	57
209	Guanosine impairs inhibitory avoidance performance in rats. NeuroReport, 2000, 11, 2537-2540.	1.2	36
210	Time-dependent enhancement of inhibitory avoidance retention and MAPK activation by post-training infusion of nerve growth factor into CA1 region of hippocampus of adult rats. European Journal of Neuroscience, 2000, 12, 2185-2189.	2.6	23
211	Learning-specific decrease in synaptosomal ATP diphosphohydrolase activity from hippocampus and entorhinal cortex of adult rats. Brain Research, 2000, 854, 253-256.	2.2	31
212	Involvement of hippocampal PKCβI isoform in the early phase of memory formation of an inhibitory avoidance learning. Brain Research, 2000, 855, 199-205.	2.2	49
213	Differential role of hippocampal cAMP-dependent protein kinase in short- and long-term memory. Neurochemical Research, 2000, 25, 621-626.	3.3	46
214	Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochemical Research, 2000, 25, 567-572.	3.3	52
215	Phosphorylated cAMP Response Element-Binding Protein as a Molecular Marker of Memory Processing in Rat Hippocampus: Effect of Novelty. Journal of Neuroscience, 2000, 20, RC112-RC112.	3.6	106
216	Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades. Anais Da Academia Brasileira De Ciencias, 2000, 72, 353-364.	0.8	33

#	Article	IF	CITATIONS
217	Role of Hippocampal Signaling Pathways in Long-Term Memory Formation of a Nonassociative Learning Task in the Rat. Learning and Memory, 2000, 7, 333-340.	1.3	242
218	Behavioural effects of acute tryptophan depletion in healthy male volunteers. Journal of Psychopharmacology, 2000, 14, 157-163.	4.0	32
219	Time-Dependent Impairment of Inhibitory Avoidance Retention in Rats by Posttraining Infusion of a Mitogen-Activated Protein Kinase Kinase Inhibitor into Cortical and Limbic Structures. Neurobiology of Learning and Memory, 2000, 73, 11-20.	1.9	93
220	Short- and Long-Term Memory Are Differentially Affected by Metabolic Inhibitors Given into Hippocampus and Entorhinal Cortex. Neurobiology of Learning and Memory, 2000, 73, 141-149.	1.9	64
221	The contribution of pharmacology to research on the mechanisms of memory formation. Trends in Pharmacological Sciences, 2000, 21, 208-210.	8.7	138
222	Different hippocampal molecular requirements for short- and long-term retrieval of one-trial avoidance learning. Behavioural Brain Research, 2000, 111, 93-98.	2.2	132
223	Molecular signalling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behavioural Brain Research, 2000, 114, 183-192.	2.2	124
224	Novelty enhances retrieval of one-trial avoidance learning in rats 1 or 31 days after training unless the hippocampus is inactivated by different receptor antagonists and enzyme inhibitors. Behavioural Brain Research, 2000, 117, 215-220.	2.2	33
225	Experience-dependent decrease in synaptically localized Fra-1. Molecular Brain Research, 2000, 78, 120-130.	2.3	11
226	Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Molecular Brain Research, 2000, 76, 36-46.	2.3	265
227	Cellular prion protein binds laminin and mediates neuritogenesis. Molecular Brain Research, 2000, 76, 85-92.	2.3	279
228	Two Time Windows of Anisomycin-Induced Amnesia for Inhibitory Avoidance Training in Rats: Protection from Amnesia by Pretraining but not Pre-exposure to the Task Apparatus. Learning and Memory, 1999, 6, 600-607.	1.3	162
229	Experience-dependent increase in cAMP-responsive element binding protein in synaptic and nonsynaptic mitochondria of the rat hippocampus. European Journal of Neuroscience, 1999, 11, 3753-3756.	2.6	31
230	Increased Sensitivity to Seizures in Mice Lacking Cellular Prion Protein. Epilepsia, 1999, 40, 1679-1682.	5.1	170
231	Separate mechanisms for short- and long-term memory. Behavioural Brain Research, 1999, 103, 1-11.	2.2	220
232	Two different properties of short- and long-term memory. Behavioural Brain Research, 1999, 103, 119-121.	2.2	26
233	Dose-dependent impairment of inhibitory avoidance retention in rats by immediate post-training infusion of a mitogen-activated protein kinase kinase inhibitor into cortical structures. Behavioural Brain Research, 1999, 105, 219-223.	2.2	52
234	Normal inhibitory avoidance learning and anxiety, but increased locomotor activity in mice devoid of PrPC. Molecular Brain Research, 1999, 71, 349-353.	2.3	85

#	Article	IF	CITATIONS
235	Stimulators of the cAMP Cascade Reverse Amnesia Induced by Intra-amygdala but Not Intrahippocampal KN-62 Administration. Neurobiology of Learning and Memory, 1999, 71, 94-103.	1.9	35
236	The Amygdala Is Involved in the Modulation of Long-Term Memory, but Not in Working or Short-Term Memory. Neurobiology of Learning and Memory, 1999, 71, 127-131.	1.9	95
237	Mechanisms for memory types differ. Nature, 1998, 393, 635-636.	27.8	243
238	Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. European Journal of Neuroscience, 1998, 10, 2669-2676.	2.6	121
239	On brain lesions, the milkman and Sigmunda. Trends in Neurosciences, 1998, 21, 423-426.	8.6	35
240	Short- and Long-Term Memory Are Differentially Regulated by Monoaminergic Systems in the Rat Brain. Neurobiology of Learning and Memory, 1998, 69, 219-224.	1.9	139
241	Further evidence for the involvement of a hippocampal cGMP/cGMP-dependent protein kinase cascade in memory consolidation. NeuroReport, 1997, 8, 2221-2224.	1.2	109
242	Systemic Administration of ACTH or Vasopressin Reverses the Amnestic Effect of Posttraining β-Endorphin or Electroconvulsive Shock but Not That of Intrahippocampal Infusion of Protein Kinase Inhibitors. Neurobiology of Learning and Memory, 1997, 68, 197-202.	1.9	29
243	Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connection to Activity in Other Brain Structures. Neurobiology of Learning and Memory, 1997, 68, 285-316.	1.9	814
244	B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training. Neurochemical Research, 1997, 22, 499-505.	3.3	56
245	Reversible Changes in Hippocampal3H-AMPA Binding Following Inhibitory Avoidance Training in the Rat. Neurobiology of Learning and Memory, 1996, 66, 85-88.	1.9	37
246	Different Brain Areas Are Involved in Memory Expression at Different Times from Training. Neurobiology of Learning and Memory, 1996, 66, 97-101.	1.9	39
247	Hippocampal cGMP and cAMP are differentially involved in memory processing of inhibitory avoidance learning. NeuroReport, 1996, 7, 585-588.	1.2	155
248	Role of hippocampal NO in the acquisition and consolidation of inhibitory avoidance learning. NeuroReport, 1995, 6, 1498-1500.	1.2	81
249	Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Brain Research, 1995, 685, 163-168.	2.2	47
250	Inhibitory Avoidance Training Induces Rapid and Selective Changes in3[H]AMPA Receptor Binding in the Rat Hippocampal Formation. Neurobiology of Learning and Memory, 1995, 64, 257-264.	1.9	54
251	Intrahippocampal, but not intra-amygdala, infusion of an inhibitor of heme oxygenase causes retrograde amnesia in the rat. European Journal of Pharmacology, 1994, 271, 227-229.	3.5	16
252	Intrahippocampal or intraamygdala infusion of KN62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, causes retrograde amnesia in the rat. Behavioral and Neural Biology, 1994, 61, 203-205.	2.2	72

#	Article	IF	CITATIONS
253	Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats. Behavioral and Neural Biology, 1994, 61, 107-109.	2.2	67
254	Memory expression of habituation and of inhibitory avoidance is blocked by CNQX infused into the entorhinal cortex. Behavioral and Neural Biology, 1993, 60, 5-8.	2.2	26
255	Memory expression is blocked by the infusion of CNQX into the hippocampus and/or the amygdala up to 20 days after training. Behavioral and Neural Biology, 1993, 59, 83-86.	2.2	59
256	Post-Training Memory Processing in Amygdala, Septum and Hippocampus: Role of Benzodiazepine/GABAA Receptors, and their Interaction with other Neurotransmitter Systems. Reviews in the Neurosciences, 1992, 3, 11-24.	2.9	12
257	Neurotransmitter receptors involved in post-training memory processing by the amygdala, medial septum, and hippocampus of the rat. Behavioral and Neural Biology, 1992, 58, 16-26.	2.2	358
258	Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behavioral and Neural Biology, 1992, 58, 76-80.	2.2	171
259	GABAA receptor modulation of memory: the role of endogenous benzodiazepines. Trends in Pharmacological Sciences, 1991, 12, 260-265.	8.7	160
260	Acetylcholine release is modulated by different opioid receptor types in different brain regions and species. Trends in Pharmacological Sciences, 1990, 11, 179-180.	8.7	22
261	Pretest β-endorphin and epinephrine, but not oxotremorine, reverse retrograde interference of a conditioned emotional response in mice. Pharmacology Biochemistry and Behavior, 1989, 33, 545-548.	2.9	4
262	Diazepam prevents post-training drug effects related to state dependency, but not post-training memory facilitation by epinephrine. Behavioral and Neural Biology, 1989, 51, 73-79.	2.2	15
263	Different forms of post-training memory processing. Behavioral and Neural Biology, 1989, 51, 171-202.	2.2	142
264	Behavioral drug actions and brain lateralization. Trends in Pharmacological Sciences, 1989, 10, 344-345.	8.7	8
265	The effect of non-factual post-training negative comment on the recall of verbal information. Journal of Psychiatric Research, 1988, 22, 165-169.	3.1	11
266	Retention enhancement by pre-test β-endorphin and oxotremorine and its reversal by scopolamine. Behavioral and Neural Biology, 1988, 50, 251-254.	2.2	17
267	Effect of novel experiences on retention of inhibitory avoidance behavior in mice: The influence of previous exposure to the same or another experience. Behavioral and Neural Biology, 1987, 47, 109-115.	2.2	36
268	The effect of an exposure to novel and non-novel video taped material on retrieval in two memory tests. Neuropsychologia, 1987, 25, 995-998.	1.6	6
269	Differential effect of posttraining naloxone, β-endorphin, leu-enkephalin and electroconvulsive shock administration upon memory of an open-field habituation and of a water-finding task. Psychoneuroendocrinology, 1986, 11, 437-446.	2.7	70
270	Retrograde memory enhancement by diazepam: its relation to anterograde amnesia, and some clinical implications. Psychopharmacology, 1986, 90, 554-6.	3.1	78

#	Article	IF	CITATIONS
271	Role of ?-Endorphin in Behavioral Regulation. Annals of the New York Academy of Sciences, 1985, 444, 162-177.	3.8	68
272	Effect of a novel experience prior to training or testing on retention of an inhibitory avoidance response in mice: Involvement of an opioid system. Behavioral and Neural Biology, 1985, 44, 228-238.	2.2	53
273	Interaction between consecutive learnings: inhibitory avoidance and habituation. Behavioral and Neural Biology, 1985, 44, 515-520.	2.2	37
274	Response of the rat brain β-endorphin system to novelty: Importance of the fornix connection. Behavioral and Neural Biology, 1985, 43, 37-46.	2.2	26
275	Factors that influence test session performance measured 0, 3, or 6 h after inhibitory avoidance training. Behavioral and Neural Biology, 1985, 43, 260-273.	2.2	18
276	On how passive is inhibitory avoidance. Behavioral and Neural Biology, 1985, 43, 327-330.	2.2	48
277	Effect of various behavioral training and testing procedures on brain β-endorphin-like immunoreactivity and the possible role of β-endorphin in behavioral regulation. Psychoneuroendocrinology, 1984, 9, 381-389.	2.7	73
278	Effect of the intraperitoneal and intracerebroventricular administration of ACTH, epinephrine, or β-endorphin on retrieval of an inhibitory avoidance task in rats. Behavioral and Neural Biology, 1984, 40, 119-122.	2.2	35
279	Memory as a state dependent phenomenon: Role of ACTH and epinephrine. Behavioral and Neural Biology, 1983, 38, 144-149.	2.2	49
280	Retrograde amnesia caused by Met- Leu- and des-Tyr-Met-enkephalin in the rat and its reversal by naloxone. Neuroscience Letters, 1981, 22, 189-193.	2.1	60
281	Effect of naloxone and morphine on various forms of memory in the rat: Possible role of endogenous opiate mechanisms in memory consolidation. Psychopharmacology, 1979, 66, 199-203.	3.1	251
282	The influence of stimulus pairing and of the shuttle-shock contingency in the performance of shuttle responses to a buzzer by weanling rats. Behavioral Biology, 1976, 17, 119-122.	2.2	12
283	Three main factors in rat shuttle behavior: Their pharmacology and sequential entry in operation during a two-way avoidance session. Psychopharmacology, 1976, 49, 145-157.	3.1	31
284	The effect of conditioning and pseudoconditioning on RNA metabolism of rat hippocampus and neocortex. Behavioral Biology, 1974, 12, 67-80.	2.2	15
285	Effects of cannabidiol and of diphenylhydantoin on the hippocampus and on learning. Psychopharmacology, 1973, 31, 167-175.	3.1	32
286	Field potentials in rat hippocampus: Monosynaptic nature and heterosynaptic post-tetanic potentiation. Experimental Neurology, 1968, 21, 133-146.	4.1	27