D Sevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5844625/publications.pdf

Version: 2024-02-01

		394421	526287
95	1,112	19	27
papers	citations	h-index	g-index
05	95	05	722
95	93	95	122
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guiding of low-energy electrons by highly orderedAl2O3nanocapillaries. Physical Review A, 2007, 75, .	2.5	104
2	Elastic scattering of electrons from tetrahydrofuran molecule. European Physical Journal D, 2005, 35, 411-416.	1.3	56
3	Absolute differential cross sections for elastic scattering of electrons from pyrimidine. Physical Review A, 2009, 79, .	2.5	55
4	Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 2014, 79, 867-880.	0.8	43
5	Structural properties and luminescence kinetics of white nanophosphor YAG:Dy. Optical Materials, 2015, 50, 250-255.	3.6	35
6	Elastic scattering of electrons from tetrahydrofurfuryl alcohol. European Physical Journal D, 2006, 40, 107-114.	1.3	30
7	Optical properties and fluorescence of quantum dots CdSe/ZnS-PMMA composite films with interface modifications. Optical Materials, 2019, 92, 405-410.	3.6	30
8	Characterization and luminescent properties of Eu3+ doped Gd2Zr2O7 nanopowders. Journal of Alloys and Compounds, 2015, 622, 292-295.	5.5	24
9	Experimental determination of the differential cross-section surface for elastic electron–atom (molecule) scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 609-623.	1.5	23
10	Effects of temperature and pressure on luminescent properties of Sr2CeO4:Eu3+ nanophosphor. Journal of Luminescence, 2018, 199, 285-292.	3.1	22
11	Elastic electron scattering by silver atom. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 283-287.	1.4	21
12	YVO ₄ :Eu ³⁺ nanopowders: multi-mode temperature sensing technique. Journal Physics D: Applied Physics, 2019, 53, 015106.	2.8	21
13	Electron-impact excitation of the $(n\hat{A}\ 1)d9ns2np$ autoionizing states of cadmium $(n\hat{A}\ 5)$ and zinc $(n\hat{A}\ 4)$. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2371-2383.	1.5	20
14	Electron scattering by ytterbium: I. Excitation of the 4f146s6p1P1resonance state and elastic collision. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1329-1340.	1.5	20
15	Absolute cross sections for elastic electron scattering from 3-hydroxytetrahydrofuran. New Journal of Physics, 2008, 10, 103005.	2.9	20
16	Experimental and theoretical study of the elastic-electron–indium-atom scattering in the intermediate energy range. Physical Review A, 2008, 77, .	2.5	20
17	Elastic electron scattering by a Pb atom. Physical Review A, 2008, 77, .	2.5	20
18	A new efficient implementation of the oddly stacked Princen-Bradley filter bank. IEEE Signal Processing Letters, 1994, 1, 166-168.	3.6	19

#	Article	IF	Citations
19	The 1S–1P electron excitations of Zn at small scattering angles. International Journal of Mass Spectrometry, 2004, 233, 253-257.	1.5	19
20	Low-energy electron transmission through high aspect ratio Al ₂ O ₃ nanocapillaries. Europhysics Letters, 2009, 86, 23001.	2.0	19
21	Differential and integrated cross sections for the electron excitation of the 41Postate of calcium atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 3571-3581.	1.5	17
22	Differential and integrated cross sections for the elastic electron scattering by calcium atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 2371-2384.	1.5	16
23	Excitations ofP1levels of zinc by electron impact on the ground state. Physical Review A, 2005, 72, .	2.5	16
24	Electron-impact excitation of the 3s3p 1P1 state of magnesium: Electron scattering at small angles. International Journal of Mass Spectrometry, 2006, 251, 66-72.	1.5	15
25	Electron collisions by metal atom vapours. Radiation Physics and Chemistry, 2007, 76, 455-460.	2.8	14
26	Orange-Reddish Light Emitting Phosphor GdVO ₄ :Sm ³⁺ Prepared by Solution Combustion Synthesis. Journal of Spectroscopy, 2018, 2018, 1-8.	1.3	13
27	Luminescence thermometry using Gd2Zr2O7:Eu3+. Optical and Quantum Electronics, 2018, 50, 1.	3.3	13
28	A new look at the comparison of the fast Hartley and Fourier transforms. IEEE Transactions on Signal Processing, 1994, 42, 2178-2182.	5.3	12
29	Elastic scattering of electrons by krypton in the energy range 20–260 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 2195-2210.	1.5	12
30	Electron scattering by ytterbium: II. Excitation of the 4f14(6s6p3P1, 5d6s1D2and 6s7p1P1) and 4f135d6s2(7/2, 5/2)1states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3489-3501.	1.5	12
31	Characterization and luminescence kinetics of Eu 3+ doped YVO 4 nanopowders. Materials Research Bulletin, 2017, 88, 121-126.	5.2	12
32	Classification of the ultrasound liver images with the 2NÃ -1 -D wavelet transform. , 0, , .		11
33	Electron scattering by magnesium: excitation of the 3s3p1P1state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 2583-2592.	1.5	11
34	Electron-impact excitation of the6p7sP13state of Pb atom at small scattering angles. Physical Review A, 2007, 75, .	2.5	11
35	Time-Resolved LIBS Streak Spectrum Processing. IEEE Transactions on Plasma Science, 2011, 39, 2782-2783.	1.3	11
36	Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder. Infrared Physics and Technology, 2016, 77, 226-229.	2.9	11

#	Article	IF	Citations
37	Experimental and theoretical cross sections for elastic electron scattering from zinc. Physical Review A, 2019, 99, .	2.5	11
38	Elastic electron scattering by argon in the vicinity of the high-energy critical minimum. Radiation Physics and Chemistry, 2004, 70, 669-676.	2.8	10
39	Elastic electron scattering by a magnesium atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1853-1861.	1.5	10
40	Elastic scattering of electrons from alanine. International Journal of Mass Spectrometry, 2008, 277, 300-304.	1.5	10
41	Time-resolved luminescence spectra of Eu \$\$^{3+}\$\$ 3 + doped YVO \$\$_4\$\$ 4, Sr \$\$_2\$\$ 2 CeO \$\$_4\$\$ 4 and Gd \$\$_2\$\$ 2 Zr \$\$_2\$\$ 2 O \$\$_7\$\$ 7 nanopowders. Optical and Quantum Electronics, 2016, 48, 1.	3.3	10
42	Electron impact excitation of the 6s 2S1/2 state of In atom at small scattering angles. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 279-282.	1.4	9
43	Absolute differential cross sections for electron excitation of silver at small scattering angles. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 53-57.	1.4	9
44	Effects of temperature on luminescent properties of Gd2O3:Er, Yb nanophosphor. Optical and Quantum Electronics, 2020, 52, 1.	3.3	9
45	Excitation of the6p7sP0,13states of Pb atoms by electron impact: Differential and integrated cross sections. Physical Review A, 2007, 76, .	2.5	8
46	Investigation and detection of cyanobacterial Cr-phycoerythrin by laser based techniques. Journal of the Serbian Chemical Society, 2014, 79, 185-198.	0.8	8
47	Evaluation of laser-induced thin-layer removal by using shadowgraphy and laser-induced breakdown spectroscopy. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	8
48	Annealing effects on luminescent properties of Eu3+ doped Gd2Zr2O7 nanopowders. Science of Sintering, 2015, 47, 269-272.	1.4	8
49	Characterization of neodymium doped calcium tungstate single crystal by Raman, IR and luminescence spectroscopy. Science of Sintering, 2018, 50, 445-455.	1.4	8
50	Critical minimum in elastic electron scattering by krypton. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 4861-4868.	1.5	7
51	The high-energy critical minimum in elastic electron scattering by argon. European Physical Journal D, 2004, 29, 329-336.	1.3	7
52	Cross section data for electron collisions in plasma physics. Journal of Physics: Conference Series, 2007, 86, 012006.	0.4	7
53	Electron scattering by magnesium: excitation of the $3s4s < sup > 1 < sup > 0 < sub >$	1.5	7
54	Time-Resolved Optical Spectra of the Laser-Induced Indium Plasma Detected Using a Streak Camera. IEEE Transactions on Plasma Science, 2014, 42, 2588-2589.	1.3	7

#	Article	IF	CITATIONS
55	Optical properties CaWO4:Nd3+/PMMA composite layered structures. Optical Materials, 2019, 96, 109361.	3.6	7
56	Joint theoretical and experimental study on elastic electron scattering from bismuth. Physical Review A, 2020, 101, .	2.5	7
57	Temperature sensing using YAG:Dy single-crystal phosphor. European Physical Journal D, 2021, 75, 1.	1.3	7
58	Measurement of Beet Root Extract Fluorescence Using TR-LIF Technique. Acta Physica Polonica A, 2009, 116, 570-572.	0.5	7
59	Discrimination of positive particles emitted in deuterium plasma focus device using SSNTD. Radiation Measurements, 1995, 25, 265-266.	1.4	6
60	Detecting indium spectral lines using electron and laser induced breakdown spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 58-61.	1.4	6
61	Laser-Induced Plasma Measurements Using Nd:YAG Laser and Streak Camera: Timing Considerations. Atoms, 2019, 7, 6.	1.6	6
62	Recommended Cross Sections for Electron–Indium Scattering. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	6
63	Electron-impact excitations of the autoionizing states of bismuth. International Journal of Mass Spectrometry, 2008, 271, 76-79.	1.5	5
64	Electron interaction with deoxyribose analogue molecules in gaseous phase. Journal of Physics: Conference Series, 2008, 101, 012014.	0.4	5
65	Time-resolved analysis of pure indium sample and LCD displays. Optical and Quantum Electronics, 2018, 50, 1.	3.3	5
66	Electron-impact excitation of the ($5s25p$) $P1/22\hat{a}\dagger'(5s26s$) $S1/22$ transition in indium: Theory and experiment. Physical Review A, 2020, 102, .	2.5	5
67	Luminescence thermometry based on Y2O2S:Er,Yb nanophosphor. Optical and Quantum Electronics, 2022, 54, .	3.3	5
68	On computing the 2-D FFT. IEEE Transactions on Signal Processing, 1999, 47, 1428-1431.	5.3	4
69	Comparison of beetroot extracts originating from several sites using time-resolved laser-induced fluorescence spectroscopy. Physica Scripta, 2012, T149, 014076.	2.5	4
70	Time resolved laser induced fluorescence measurements: Considerations when using Nd:YAG based system. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 16-19.	1.4	4
71	Development of time-resolved laser-induced fluorescence spectroscopic technique for the analysis of biomolecules. Facta Universitatis - Series Physics Chemistry and Technology, 2008, 6, 105-117.	0.5	4
72	The Bridgman method growth and spectroscopic characterization of calcium fluoride single crystals. Science of Sintering, 2016, 48, 333-341.	1.4	4

#	Article	IF	CITATIONS
73	Measurement of fluences and energies of D+ emitted from the plasma focus in capacitor bank energy interval of 1-20 kJ. Nuclear Tracks and Radiation Measurements (1993), 1993, 22, 535-536.	0.1	3
74	Angular distribution of positive particles emitted from deuterium plasma focus. Radiation Measurements, 1997, 28, 245-248.	1.4	3
75	Electron impact excitation of the 3s3p3P state of magnesium from the ground state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 055208.	1.5	3
76	Electron-impact excitation of the $(4d105s)S1/22\hat{a}$ † $'(4d95s2)D3/22$ and $(4d105s)S1/22\hat{a}$ † $'(4d106s)S1/22$ transition in silver: Experiment and theory. Physical Review A, 2021, 104, .	ons 2.5	3
77	Information System in Atomic Collision Physics. , 2007, , 485-490.		3
78	Volume correction factor in electron-Indium atom scattering experiments. Facta Universitatis - Series Physics Chemistry and Technology, 2008, 6, 119-125.	0.5	3
79	Improved implementation of the Princen-Bradley filter bank. IEEE Transactions on Signal Processing, 1994, 42, 3260-3261.	5.3	2
80	Analysis of hot spots in deuterium plasma focus with SSNTD. Radiation Measurements, 1997, 28, 241-243.	1.4	2
81	Electron-impact excitation of silver. Physical Review A, 2015, 91, .	2.5	2
82	Application of Fourier-Pad \tilde{A} © Approximation in Analysis \hat{l}_{i} f Holographic Photonic Crystal Structures. Acta Physica Polonica A, 2009, 116, 647-648.	0.5	2
83	Transport of electrons and propagation of the negative ionisation fronts in indium vapour. Plasma Sources Science and Technology, 0, , .	3.1	2
84	On computing the 2-D extended lapped transforms. , 0, , .		1
85	Electron excitation and autoionisation cross sections for elements of chemically peculiar stars: Study of bismuth. Journal of Physics: Conference Series, 2014, 565, 012019.	0.4	1
86	Electron impact excitation of the $6p < sup > 2 < / sup > 7s < sup > 4 < / sup > P < sub > 1/2 < / sub > state of bismuth from the ground state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 235203.$	1.5	1
87	LOW ENERGY ELECTRON INTERACTIONS WITH BIO-MOLECULES. , 2006, , .		1
88	Electron energy-loss spectroscopy of autoionizing states of zinc. Serbian Astronomical Journal, 2004, , 53-58.	0.6	1
89	Electron-impact excitation of the 5 \$varvec{^2extbf{S}_{1/2} ightarrow 5 ^2extbf{P}_{1/2}}\$\$ and 5 \$\$varvec{^2extbf{P}_{3/2}}\$\$ transitions in rubidium by 40 eV electrons: theory and experiment. European Physical Journal D, 2022, 76, .	1.3	1
90	Electron impact excitation of rubidium. Journal of Physics: Conference Series, 2012, 388, 042022.	0.4	0

D SEVIC

#	Article	IF	CITATIONS
91	Excitation of silver by electron impact. Journal of Physics: Conference Series, 2012, 388, 042015.	0.4	0
92	Application of Fourier-Pade Approximation in Analysis of Holographic Diffraction Gratings. Acta Physica Polonica A, 2013, 124, 619-621.	0.5	0
93	Electron scattering by silver: excitation of the 4 <i>d</i> ⁹ 5 <i>s</i> ² 5 <i>s1/2states. Journal of Physics: Conference Series, 2015, 635, 052054.</i>	0.4	0
94	Time-resolved luminescence spectra of greater celandine plant extract (Chelidonium majus L.). European Physical Journal D, 2021, 75, 1 .	1.3	0
95	Optical and Electron Spectrometry of Molecules of Biological Interest. Acta Physica Polonica A, 2007, 112, 1145-1150.	0.5	0