
Taco Nicolai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5844401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. Journal of Colloid and Interface Science, 2022, 608, 1191-1201.	9.4	21
2	Utilization of xanthan to stabilize water in water emulsions and modulate their viscosity. Carbohydrate Polymers, 2022, 277, 118812.	10.2	21
3	Stabilization of amylopectin-pullulan water in water emulsions by Interacting protein particles. Food Hydrocolloids, 2022, 124, 107320.	10.7	13
4	Exploiting multiple phase separation to stabilize water in water emulsions and form stable microcapsules. Journal of Colloid and Interface Science, 2022, 617, 65-72.	9.4	12
5	Characterization of tuna dark muscle protein isolate. Journal of Food Processing and Preservation, 2022, 46, .	2.0	0
6	Self-Assembly in water of C60 fullerene into isotropic nanoparticles or nanoplatelets mediated by a cationic amphiphilic polymer. Journal of Colloid and Interface Science, 2022, 624, 537-545.	9.4	3
7	Assessment of the stability of water in water emulsions using analytical centrifugation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125619.	4.7	11
8	Effect of the Interfacial Tension on Droplet Association in Aqueous Multiphase Systems. Langmuir, 2021, 37, 5909-5915.	3.5	7
9	Heat-induced gelation of casein micelles. Food Hydrocolloids, 2021, 118, 106755.	10.7	21
10	Water-in-water-in-water emulsions formed by cooling mixtures of guar, amylopectin and gelatin. Food Hydrocolloids, 2021, 118, 106763.	10.7	14
11	Effect of hydrophobicity and molar mass on the capacity of chitosan and κ-carrageenan to stabilize water in water emulsions. Carbohydrate Polymers, 2021, 271, 118423.	10.2	6
12	Effect of adding a third polysaccharide on the adsorption of protein microgels at the interface of polysaccharide-based water in water emulsions. Journal of Colloid and Interface Science, 2021, 603, 633-640.	9.4	14
13	Thermoresponsive dynamic BAB block copolymer networks synthesized by aqueous PISA in one-pot. Polymer Chemistry, 2021, 12, 1040-1049.	3.9	12
14	Effect of kappa carrageenan on acid-induced gelation of whey protein aggregates. Part II: Microstructure. Food Hydrocolloids, 2020, 102, 105590.	10.7	2
15	Effect of Kappa carrageenan on acid-induced gelation of whey protein aggregates. Part I: Potentiometric titration, rheology and turbidity. Food Hydrocolloids, 2020, 102, 105589.	10.7	13
16	Gelation of whey protein fractal aggregates induced by the interplay between added HCl, CaCl2 and NaCl. International Dairy Journal, 2020, 111, 104824.	3.0	5
17	Viscosity of Aqueous Polysaccharide Solutions and Selected Homogeneous Binary Mixtures. Macromolecules, 2020, 53, 10514-10525.	4.8	18
18	Viscosity and Morphology of Water-in-Water Emulsions: The Effect of Different Biopolymer Stabilizers. Macromolecules, 2020, 53, 3914-3922.	4.8	15

#	Article	IF	CITATIONS
19	Heat induced gelation of micellar casein with and without whey proteins in the presence of polyphosphate. International Dairy Journal, 2020, 104, 104640.	3.0	1
20	pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins. Food Hydrocolloids, 2020, 105, 105853.	10.7	20
21	Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydrate Polymers, 2019, 223, 115107.	10.2	45
22	Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environmental Science: Nano, 2019, 6, 315-324.	4.3	54
23	Heat-induced gelation of mixtures of casein micelles with whey protein aggregates. Food Hydrocolloids, 2019, 92, 198-207.	10.7	17
24	Gelation of food protein-protein mixtures. Advances in Colloid and Interface Science, 2019, 270, 147-164.	14.7	112
25	Stabilization of Water-In-Water Emulsions by Linear Homo-Polyelectrolytes. Langmuir, 2019, 35, 9029-9036.	3.5	30
26	Heat-induced and acid-induced gelation of dairy/plant protein dispersions and emulsions. Current Opinion in Food Science, 2019, 27, 43-48.	8.0	32
27	Heat-induced gelation of plant globulins. Current Opinion in Food Science, 2019, 27, 18-22.	8.0	77
28	Viscosity of mixtures of protein aggregates with different sizes and morphologies. Soft Matter, 2019, 15, 4682-4688.	2.7	14
29	Heat-induced gelation of micellar casein/plant protein oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 85-92.	4.7	27
30	Mechanism of the spontaneous formation of plant protein microcapsules in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 213-219.	4.7	22
31	Mobility of carrageenan chains in iota- and kappa carrageenan gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 113-118.	4.7	16
32	Rheology and microstructure of mixtures of iota and kappa-carrageenan. Food Hydrocolloids, 2019, 89, 180-187.	10.7	40
33	Structure and rheological properties of carrageenans extracted from different red algae species cultivated in Cam Ranh Bay, Vietnam. Journal of Applied Phycology, 2019, 31, 1947-1953.	2.8	22
34	Heat-induced gelation of mixtures of micellar caseins and plant proteins in aqueous solution. Food Research International, 2019, 116, 1135-1143.	6.2	30
35	Acid-induced gelation of whey protein aggregates: Kinetics, gel structure and rheological properties. Food Hydrocolloids, 2018, 81, 263-272.	10.7	42
36	Heat-induced gelation of aqueous micellar casein suspensions as affected by globular protein addition. Food Hydrocolloids, 2018, 82, 258-267.	10.7	32

#	Article	IF	CITATIONS
37	Calcium-induced gelation of whey protein aggregates: Kinetics, structure and rheological properties. Food Hydrocolloids, 2018, 79, 145-157.	10.7	54
38	Enhancement of the particle stabilization of water-in-water emulsions by modulating the phase preference of the particles. Journal of Colloid and Interface Science, 2018, 530, 505-510.	9.4	27
39	Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration. Food Hydrocolloids, 2018, 77, 66-74.	10.7	27
40	Specific effect of calcium ions on thermal gelation of aqueous micellar casein suspensions. Colloids and Surfaces B: Biointerfaces, 2018, 163, 218-224.	5.0	21
41	Exploiting Complex Formation between Polysaccharides and Protein Microgels To Influence Particle Stabilization of W/W Emulsions. Langmuir, 2018, 34, 11806-11813.	3.5	23
42	Photo-Cross-Linked Self-Assembled Poly(ethylene oxide)-Based Hydrogels Containing Hybrid Junctions with Dynamic and Permanent Cross-Links. ACS Macro Letters, 2018, 7, 683-687.	4.8	13
43	Water-In-Water Emulsion Gels Stabilized by Cellulose Nanocrystals. Langmuir, 2018, 34, 6887-6893.	3.5	49
44	Formation and characterization of chitosan-protein particles with fractal whey protein aggregates. Colloids and Surfaces B: Biointerfaces, 2018, 169, 257-264.	5.0	22
45	Polymer Probe Diffusion in Globular Protein Gels and Aggregate Suspensions. Journal of Physical Chemistry B, 2018, 122, 8075-8081.	2.6	4
46	Mixtures of sodium caseinate and whey protein aggregates: Viscosity and acid- or salt-induced gelation. International Dairy Journal, 2018, 86, 110-119.	3.0	8
47	Cold gelation of water in water emulsions stabilized by protein particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 332-341.	4.7	27
48	Exploiting Salt Induced Microphase Separation To Form Soy Protein Microcapsules or Microgels in Aqueous Solution. Biomacromolecules, 2017, 18, 2064-2072.	5.4	36
49	Effect of the pH and NaCl on the microstructure and rheology of mixtures of whey protein isolate and casein micelles upon heating. Food Hydrocolloids, 2017, 70, 114-122.	10.7	38
50	The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate. Food Hydrocolloids, 2017, 70, 88-95.	10.7	54
51	The effect of the pH on thermal aggregation and gelation of soy proteins. Food Hydrocolloids, 2017, 66, 27-36.	10.7	53
52	pH- and Thermoresponsive Self-Assembly of Cationic Triblock Copolymers with Controlled Dynamics. Macromolecules, 2017, 50, 416-423.	4.8	23
53	Viscoelastic Properties of Hydrogels Based on Self-Assembled Multisticker Polymers Grafted with pH-Responsive Grafts. Macromolecules, 2017, 50, 8178-8184.	4.8	8
54	Comments on "Structure of a self-assembled network made of polymeric worm-like micelles―by Wissam Moussa. Polymer Bulletin, 2017, 74, 2445-2445.	3.3	0

#	Article	IF	CITATIONS
55	Heat-set emulsion gels of casein micelles in mixtures with whey protein isolate. Food Hydrocolloids, 2017, 73, 213-221.	10.7	31
56	Xyloglucan gelation induced by enzymatic degalactosylation; kinetics and the effect of the molar mass. Carbohydrate Polymers, 2017, 174, 517-523.	10.2	9
57	Particle stabilized water in water emulsions. Food Hydrocolloids, 2017, 68, 157-163.	10.7	107
58	Effect of orthophosphate and calcium on the self assembly of concentrated sodium caseinate solutions. International Dairy Journal, 2017, 64, 1-8.	3.0	10
59	Data on the characterization of native soy globulin by SDS-Page, light scattering and titration. Data in Brief, 2016, 9, 749-752.	1.0	13
60	Interpenetrated Si-HPMC/alginate hydrogels as a potential scaffold for human tissue regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 99.	3.6	14
61	The effect of aggregation into fractals or microgels on the charge density and the isoionic point of globular proteins. Food Hydrocolloids, 2016, 60, 470-475.	10.7	30
62	Gelation Kinetics and Network Structure of Cellulose Nanocrystals in Aqueous Solution. Biomacromolecules, 2016, 17, 3298-3304.	5.4	41
63	Heat-induced gelation of casein micelles in aqueous suspensions at different pH. Colloids and Surfaces B: Biointerfaces, 2016, 146, 801-807.	5.0	31
64	Dynamic Mechanical Properties of Networks of Wormlike Micelles Formed by Self-Assembled Comblike Amphiphilic Copolyelectrolytes. Macromolecules, 2016, 49, 7045-7053.	4.8	4
65	Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocolloids, 2016, 61, 740-746.	10.7	41
66	pH-Controlled Rheological Properties of Mixed Amphiphilic Triblock Copolymers. Macromolecules, 2016, 49, 7469-7477.	4.8	8
67	Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate. Biomacromolecules, 2016, 17, 3800-3807.	5.4	14
68	Core-shell particles formed by β-lactoglobulin microgel coated with xyloglucan. International Journal of Biological Macromolecules, 2016, 92, 357-361.	7.5	6
69	Formation of porous hydrogels by self-assembly of photo-cross-linkable triblock copolymers in the presence of homopolymers. Polymer, 2016, 106, 152-158.	3.8	8
70	Influence of the Protein Particle Morphology and Partitioning on the Behavior of Particle-Stabilized Water-in-Water Emulsions. Langmuir, 2016, 32, 7189-7197.	3.5	63
71	Heat-induced gelation of mixtures of whey protein isolate and sodium caseinate between pH 5.8 and pH 6.6. Food Hydrocolloids, 2016, 61, 433-441.	10.7	17
72	Stabilization of Water-in-Water Emulsions by Polysaccharide-Coated Protein Particles. Langmuir, 2016, 32, 1227-1232.	3.5	86

#	Article	IF	CITATIONS
73	Structure of self-assembled native soy globulin in aqueous solution as a function of the concentration and the pH. Food Hydrocolloids, 2016, 56, 417-424.	10.7	39
74	Structure and flow of dense suspensions of protein fractal aggregates in comparison with microgels. Soft Matter, 2016, 12, 2785-2793.	2.7	18
75	Stabilization of Water-in-Water Emulsions by Nanorods. ACS Macro Letters, 2016, 5, 283-286.	4.8	138
76	Structure of a self-assembled network made of polymeric worm-like micelles. Polymer Bulletin, 2016, 73, 2689-2705.	3.3	4
77	Formation and functionality of self-assembled whey protein microgels. Colloids and Surfaces B: Biointerfaces, 2016, 137, 32-38.	5.0	59
78	Transient and quasi-permanent networks in xyloglucan solutions. Carbohydrate Polymers, 2015, 129, 216-223.	10.2	18
79	Self-Assembly and Critical Solubility Temperature of Supramolecular Polystyrene Bottle-Brushes in Cyclohexane. Macromolecules, 2015, 48, 1364-1370.	4.8	16
80	The effect of the competition for calcium ions between κ-carrageenan and β-lactoglobulin on the rheology and the structure in mixed gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 9-18.	4.7	6
81	Dissociation of native casein micelles induced by sodium caseinate. Food Hydrocolloids, 2015, 49, 224-231.	10.7	26
82	The effect of pH on the structure and phosphate mobility of casein micelles in aqueous solution. Food Hydrocolloids, 2015, 51, 88-94.	10.7	43
83	pH-Responsive Water-in-Water Pickering Emulsions. Langmuir, 2015, 31, 3605-3611.	3.5	84
84	Effect of Connectivity on the Structure and the Liquid–Solid Transition of Dense Suspensions of Soft Colloids. Macromolecules, 2015, 48, 7995-8002.	4.8	10
85	Branched Wormlike Micelles Formed by Self-Assembled Comblike Amphiphilic Copolyelectrolytes. Macromolecules, 2015, 48, 7604-7612.	4.8	9
86	Highlighting the Role of the Random Associating Block in the Self-Assembly of Amphiphilic Block–Random Copolymers. Macromolecules, 2015, 48, 7613-7619.	4.8	14
87	Interplay of thermal and covalent gelation of silanized hydroxypropyl methyl cellulose gels. Carbohydrate Polymers, 2015, 115, 510-515.	10.2	12
88	The influence of adding monovalent salt on the rheology of concentrated sodium caseinate suspensions and the solubility of calcium caseinate. International Dairy Journal, 2014, 37, 48-54.	3.0	22
89	Combined effects of temperature and elasticity on phase separation in mixtures ofÂκ-carragheenan and β-lactoglobulin aggregates. Food Hydrocolloids, 2014, 34, 138-144.	10.7	9
90	The effect of protein aggregate morphology on phase separation in mixtures with polysaccharides. Journal of Physics Condensed Matter, 2014, 26, 464102.	1.8	5

#	Article	IF	CITATIONS
91	Charge Dependent Dynamics of Transient Networks and Hydrogels Formed by Self-Assembled pH-Sensitive Triblock Copolyelectrolytes. Macromolecules, 2014, 47, 2439-2444.	4.8	37
92	Evidence for the Coexistence of Interpenetrating Permanent and Transient Networks of Hydroxypropyl Methyl Cellulose. Biomacromolecules, 2014, 15, 311-318.	5.4	12
93	Liquid–Solid Transition and Crystallization of Mixtures of Frozen and Dynamic Star-Like Polymers. Macromolecules, 2014, 47, 1175-1180.	4.8	5
94	Heat induced formation of beta-lactoglobulin microgels driven by addition of calcium ions. Food Hydrocolloids, 2014, 34, 227-235.	10.7	66
95	Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydrate Polymers, 2014, 112, 10-15.	10.2	57
96	Stabilization of Water-in-Water Emulsions by Addition of Protein Particles. Langmuir, 2013, 29, 10658-10664.	3.5	142
97	Controlled food protein aggregation for new functionality. Current Opinion in Colloid and Interface Science, 2013, 18, 249-256.	7.4	248
98	Dynamic Arm Exchange Facilitates Crystallization and Jamming of Starlike Polymers by Spontaneous Fine-Tuning of the Number of Arms. Physical Review Letters, 2013, 110, 028302.	7.8	16
99	Competition Between Steric Hindrance and Hydrogen Bonding in the Formation of Supramolecular Bottle Brush Polymers. Macromolecules, 2013, 46, 7911-7919.	4.8	56
100	Structure of pH sensitive self-assembled amphiphilic di- and triblock copolyelectrolytes: micelles, aggregates and transient networks. Physical Chemistry Chemical Physics, 2013, 15, 3955.	2.8	36
101	pH-Sensitive hydrogels formed by self-assembled amphiphilic triblock copolyelectrolytes. Reactive and Functional Polymers, 2013, 73, 965-968.	4.1	9
102	Comparative study of the rheology and the structure of sodium and calcium caseinate solutions. International Dairy Journal, 2013, 31, 100-106.	3.0	19
103	Slow dynamics in transient polyelectrolyte hydrogels formed by self-assembly of block copolymers. Physical Review E, 2013, 87, 062302.	2.1	8
104	Tuning the Structure of Protein Particles and Gels with Calcium or Sodium Ions. Biomacromolecules, 2013, 14, 1980-1989.	5.4	61
105	Effect of Arm Exchange on the Liquid–Solid Transition of Dense Suspensions of Star Polymers. Journal of Physical Chemistry B, 2013, 117, 12312-12318.	2.6	9
106	Slow dynamics and structure in jammed milk protein suspensions. Faraday Discussions, 2012, 158, 325.	3.2	20
107	Progressive Freezing-in of the Junctions in Self-Assembled Triblock Copolymer Hydrogels during Aging. Macromolecules, 2012, 45, 1025-1030.	4.8	23
108	Relation between the gel structure and the mobility of tracers in globular protein gels. Journal of Colloid and Interface Science, 2012, 388, 293-299.	9.4	16

#	Article	IF	CITATIONS
109	Particles Trapped at the Droplet Interface in Water-in-Water Emulsions. Langmuir, 2012, 28, 5921-5926.	3.5	130
110	Ionization Of Amphiphilic Acidic Block Copolymers. Journal of Physical Chemistry B, 2012, 116, 7560-7565.	2.6	44
111	Rheology and structure of mixtures of Î ¹ -carrageenan and sodium caseinate. Food Hydrocolloids, 2012, 27, 235-241.	10.7	11
112	Phase separation driven by aggregation can be reversed by elasticity in gelling mixtures of polysaccharides and proteins. Soft Matter, 2011, 7, 2507.	2.7	27
113	Controlling the Dynamics of Self-Assembled Triblock Copolymer Networks via the pH. Macromolecules, 2011, 44, 4487-4495.	4.8	80
114	Kinetics and Structure during Self-Assembly of Oppositely Charged Proteins in Aqueous Solution. Biomacromolecules, 2011, 12, 1920-1926.	5.4	27
115	Particle Diffusion in Clobular Protein Gels in Relation to the Gel Structure. Biomacromolecules, 2011, 12, 450-456.	5.4	23
116	On the Crucial Importance of the pH for the Formation and Self-Stabilization of Protein Microgels and Strands. Langmuir, 2011, 27, 15092-15101.	3.5	66
117	Structure and Rheology of Self-Assembled Telechelic Associative Polymers in Aqueous Solution before and after Photo-Cross-Linking. Macromolecules, 2011, 44, 8225-8232.	4.8	30
118	Gel formation of mixtures of κ-carrageenan and sodium caseinate. Food Hydrocolloids, 2011, 25, 750-757.	10.7	9
119	Cluster formation and phase separation in mixtures of sodium κ-carrageenan and sodium caseinate. Food Hydrocolloids, 2011, 25, 743-749.	10.7	14
120	β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 2011, 25, 1945-1962.	10.7	456
121	Rheology of associative polymer solutions. Current Opinion in Colloid and Interface Science, 2011, 16, 18-26.	7.4	219
122	Self-diffusion of non-interacting hard spheres in particle gels. Journal of Physics Condensed Matter, 2011, 23, 234115.	1.8	3
123	Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter, 2010, 6, 3111.	2.7	265
124	Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydrate Polymers, 2010, 82, 1228-1235.	10.2	131
125	Droplet deformation of a strongly shear thinning dense suspension of polymeric micelles. Rheologica Acta, 2010, 49, 647-655.	2.4	12
126	Shear-induced gelation of associative polyelectrolytes. Polymer, 2010, 51, 1964-1971.	3.8	27

#	Article	IF	CITATIONS
127	Salt-Induced Gelation of Globular Protein Aggregates: Structure and Kinetics. Biomacromolecules, 2010, 11, 864-871.	5.4	65
128	Structure and gelation mechanism of silk hydrogels. Physical Chemistry Chemical Physics, 2010, 12, 3834.	2.8	86
129	Crystallization and dynamical arrest of attractive hard spheres. Journal of Chemical Physics, 2009, 130, 064504.	3.0	21
130	Characterization of fish myosin aggregates using static and dynamic light scattering. Food Hydrocolloids, 2009, 23, 296-305.	10.7	33
131	Heat-induced aggregation of whey proteins in the presence of κ-casein or sodium caseinate. Food Hydrocolloids, 2009, 23, 1103-1110.	10.7	69
132	Stability of caseinate solutions in the presence of calcium. Food Hydrocolloids, 2009, 23, 1164-1168.	10.7	44
133	Quantitative analysis of confocal laser scanning microscopy images of heat-set globular protein gels. Food Hydrocolloids, 2009, 23, 1111-1119.	10.7	56
134	Food Colloids, Le Mans, April 2008. Food Hydrocolloids, 2009, 23, 1073.	10.7	1
135	12th Food Colloids 2008 — Creating structure, delivering functionality. Advances in Colloid and Interface Science, 2009, 150, 1.	14.7	0
136	Structure and Viscoelasticity of Mixed Micelles Formed by Poly(ethylene oxide) End Capped with Alkyl Groups of Different Length. Langmuir, 2009, 25, 515-521.	3.5	33
137	Transient Gelation and Glass Formation of Reversibly Cross-linked Polymeric Micelles. Journal of Physical Chemistry B, 2009, 113, 3000-3007.	2.6	11
138	Rheology of thermo-reversible fish protein isolate gels. Food Research International, 2009, 42, 915-924.	6.2	23
139	Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH. Soft Matter, 2009, 5, 4033.	2.7	82
140	Structure and dynamical mechanical properties of suspensions of sodium caseinate. Journal of Colloid and Interface Science, 2008, 326, 96-102.	9.4	84
141	Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food Hydrocolloids, 2008, 22, 1460-1466.	10.7	140
142	Diffusion limited cluster aggregation with irreversible slippery bonds. European Physical Journal E, 2008, 27, 297-308.	1.6	27
143	Gelation of Regenerated Fibroin Solution. AIP Conference Proceedings, 2008, , .	0.4	0
144	Structure and Rheology of Mixed Polymeric Micelles Formed by Hydrophobically End-Capped Poly(ethylene oxide). Macromolecules, 2008, 41, 6523-6530.	4.8	13

#	Article	IF	CITATIONS
145	Light scattering study of heat-denatured globular protein aggregates. International Journal of Biological Macromolecules, 2008, 43, 129-135.	7.5	100
146	Scattering and Turbidity Study of the Dissociation of Casein by Calcium Chelation. Biomacromolecules, 2008, 9, 369-375.	5.4	70
147	The influence of electrostatic interaction on the structure and the shear modulus of heat-set globular protein gels. Soft Matter, 2008, 4, 893.	2.7	53
148	Tracer Diffusion in Colloidal Gels. Journal of Physical Chemistry B, 2008, 112, 743-748.	2.6	33
149	Structure and Rheology of Dense Micelles Suspensions Formed by Hydrophobically End-capped PEO. AIP Conference Proceedings, 2008, , .	0.4	0
150	The influence of bond rigidity and cluster diffusion on the self-diffusion of hard spheres with square well interaction. Journal of Chemical Physics, 2008, 128, 204504.	3.0	25
151	Shear Flow and Large Amplitude Oscillation Shear Study of Solutions of Aggregating Micellar Casein Particles. Applied Rheology, 2008, 18, 23050-1-23050-7.	5.2	1
152	Quantitative analysis of protein gel structure by confocal laser scanning microscopy. , 2008, , 757-758.		0
153	Self-diffusion of reversibly aggregating spheres. Journal of Chemical Physics, 2007, 127, 054503.	3.0	10
154	Light-Scattering Study of the Structure of Aggregates and Gels Formed by Heat-Denatured Whey Protein Isolate and β-Lactoglobulin at Neutral pH. Journal of Agricultural and Food Chemistry, 2007, 55, 3104-3111.	5.2	86
155	Dynamical mechanical characterization of gelling micellar casein particles. Journal of Rheology, 2007, 51, 971-986.	2.6	7
156	Influence of Adding Unfunctionalized PEO on the Viscoelasticity and the Structure of Dense Polymeric Micelle Solutions Formed by Hydrophobically End-Capped PEO. Macromolecules, 2007, 40, 4626-4634.	4.8	23
157	Effect of the Cluster Size on the Micro Phase Separation in Mixtures of β-Lactoglobulin Clusters and κ-Carrageenan. Biomacromolecules, 2006, 7, 304-309.	5.4	20
158	Strain hardening and fracture of heat-set fractal globular protein gels. Journal of Colloid and Interface Science, 2006, 293, 376-383.	9.4	46
159	Coupling between polysaccharide gelation and micro-phase separation of globular protein clusters. Journal of Colloid and Interface Science, 2006, 304, 335-341.	9.4	11
160	Flocculation and percolation in reversible cluster-cluster aggregation. European Physical Journal E, 2006, 19, 203-211.	1.6	21
161	Calcium and acid induced gelation of (amidated) low methoxyl pectin. Food Hydrocolloids, 2006, 20, 901-907.	10.7	106
162	Phase separation and percolation of reversibly aggregating spheres with a square-well attraction potential. Journal of Chemical Physics, 2006, 125, 184512.	3.0	37

#	Article	IF	CITATIONS
163	Dynamic mechanical properties of suspensions of micellar casein particles. Journal of Colloid and Interface Science, 2005, 287, 468-475.	9.4	39
164	Aggregation and gelation of micellar casein particles. Journal of Colloid and Interface Science, 2005, 287, 85-93.	9.4	38
165	Depletion from a hard wall induced by aggregation and gelation. European Physical Journal E, 2005, 18, 37-40.	1.6	4
166	Revised state diagram of Laponite dispersions. Journal of Colloid and Interface Science, 2005, 283, 397-405.	9.4	206
167	Shear Flow and Large Strain Oscillation of Dense Polymeric Micelle Suspension. Macromolecules, 2005, 38, 9794-9802.	4.8	21
168	Influence of the NaCl or CaCl2Concentration on the Structure of Heat-Set Bovine Serum Albumin Gels at pH 7. Biomacromolecules, 2005, 6, 2157-2163.	5.4	42
169	Jamming and Gelation of Dense β-Casein Micelle Suspensions. Biomacromolecules, 2005, 6, 3107-3111.	5.4	22
170	Influence of Chain Length and Polymer Concentration on the Gelation of (Amidated) Low-Methoxyl Pectin Induced by Calcium. Biomacromolecules, 2005, 6, 2954-2960.	5.4	21
171	Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. Journal of Colloid and Interface Science, 2004, 275, 191-196.	9.4	132
172	Structure Factor and Elasticity of a Heat-Set Globular Protein Gel. Macromolecules, 2004, 37, 614-620.	4.8	70
173	Dynamic mechanical characterization of the heat-induced formation of fractal globular protein gels. Journal of Rheology, 2004, 48, 1123-1134.	2.6	16
174	Influence of the Ionic Strength on the Structure of Heat-Set Globular Protein Gels at pH 7. Ovalbumin. Macromolecules, 2004, 37, 8709-8714.	4.8	35
175	Influence of the Ionic Strength on the Structure of Heat-Set Globular Protein Gels at pH 7. β-Lactoglobulin. Macromolecules, 2004, 37, 8703-8708.	4.8	49
176	Jamming and Crystallization of Polymeric Micelles. Macromolecules, 2004, 37, 8066-8071.	4.8	28
177	Heat induced aggregation and gelation of casein submicelles. International Dairy Journal, 2004, 14, 297-303.	3.0	74
178	Influence of the ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7. International Journal of Biological Macromolecules, 2004, 34, 21-28.	7.5	100
179	Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocolloids, 2003, 17, 237-244.	10.7	130
180	Association of Adhesive Spheres Formed by Hydrophobically End-Capped PEO. 1. Influence of the Presence of Single End-Capped PEO. Macromolecules, 2003, 36, 1331-1340.	4.8	77

#	Article	IF	CITATIONS
181	Association of Adhesive Spheres Formed by Hydrophobically End-Capped PEO. 2. Influence of the Alkyl End-Group Length and the Chain Backbone Architecture. Macromolecules, 2003, 36, 1341-1348.	4.8	43
182	Relation between aggregation and phase separation: Three-dimensional Monte Carlo simulations. Physical Review E, 2002, 66, 061405.	2.1	12
183	Influence of Entanglements on the Viscoelastic Relaxation of Polyurethane Melts and Gels. Macromolecules, 2002, 35, 141-150.	4.8	14
184	Light Scattering Study of Heat-Induced Aggregation and Gelation of Ovalbumin. Macromolecules, 2002, 35, 4753-4762.	4.8	88
185	Influence of genetic variation on the aggregation of heat-denatured β-lactoglobulin. International Dairy Journal, 2002, 12, 671-678.	3.0	24
186	Aggregation, gelation and phase separation of heat denatured globular proteins. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 253-265.	2.6	122
187	Characterization of Randomly Branched Polymers Formed by End-Linking Linear Polystyrene Using Controlled Free Radical Polymerization. Macromolecules, 2001, 34, 4109-4113.	4.8	9
188	Structure of aggregating l̂º-carrageenan fractions studied by light scattering. International Journal of Biological Macromolecules, 2001, 28, 157-165.	7.5	37
189	Phase Separation and Association of Globular Protein Aggregates in the Presence of Polysaccharides: 2. Heated Mixtures of Native β-Lactoglobulin and κ-Carrageenan. Langmuir, 2001, 17, 4380-4385.	3.5	44
190	Effect of Random End-Linking on the Viscoelastic Relaxation of Entangled Star Polymers. Macromolecules, 2001, 34, 5205-5214.	4.8	12
191	Phase Separation and Association of Globular Protein Aggregates in the Presence of Polysaccharides: 1. Mixtures of Preheated β-Lactoglobulin and κ-Carrageenan at Room Temperature. Langmuir, 2001, 17, 4372-4379.	3.5	29
192	Dynamics of End-Linked Poly(propylene sulfide). Macromolecules, 2001, 34, 59-65.	4.8	6
193	Self-diffusion of Native Proteins and Dextran in Heat-set Globular Protein Gels. Journal of Physical Chemistry B, 2001, 105, 5782-5788.	2.6	19
194	Dielectric Relaxation of Linear and Cross-Linked Polyurethane. Macromolecules, 2001, 34, 8995-9001.	4.8	4
195	Light Scattering Study of Turbid Heat-Set Globular Protein Gels Using Cross-Correlation Dynamic Light Scattering. Journal of Colloid and Interface Science, 2001, 240, 419-424.	9.4	39
196	Dynamic Light-Scattering Study of Aggregating and Gelling Colloidal Disks. Journal of Colloid and Interface Science, 2001, 244, 51-57.	9.4	61
197	Aggregation behaviour of monosulfonated telechelic ionomers. Polymer International, 2000, 49, 561-566.	3.1	2
198	Dynamical mechanical properties of gelling colloidal disks. Journal of Rheology, 2000, 44, 585-594.	2.6	84

#	Article	IF	CITATIONS
199	Molar Mass Distribution of Linear and Branched Polyurethane Studied by Size Exclusion Chromatography. Macromolecules, 2000, 33, 1703-1709.	4.8	25
200	Structure and Kinetics of Aggregating l̂º-Carrageenan Studied by Light Scattering. Macromolecules, 2000, 33, 2497-2504.	4.8	41
201	Characterization of Semidilute κ-Carrageenan Solutions. Macromolecules, 2000, 33, 7471-7474.	4.8	29
202	Light Scattering Study of the Dispersion of Laponite. Langmuir, 2000, 16, 8189-8193.	3.5	121
203	Size distribution of percolating clusters on cubic lattices. Journal of Physics A, 2000, 33, 7687-7697.	1.6	9
204	Comparison of Polymer Dynamics between Entanglements and Covalent Cross-Links. Physical Review Letters, 1999, 82, 863-866.	7.8	24
205	Growth and structure of aggregates of heat-denatured beta-Lactoglobulin. International Journal of Food Science and Technology, 1999, 34, 451-465.	2.7	102
206	Static and Dynamic Scattering of \hat{I}^2 -Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2. Macromolecules, 1999, 32, 2542-2552.	4.8	213
207	Heat induced aggregation and gelation of β-lactoglobulin in the presence of κ-carrageenan. Food Hydrocolloids, 1999, 13, 1-5.	10.7	69
208	Dynamic mechanical properties of linear and cross-linked polyurethane. Journal of Rheology, 1999, 43, 1511-1524.	2.6	24
209	Concentration Fluctuations in Entangled Polymer Solutions near the Liquidâ^'Liquid Phase Separation Temperature. Macromolecules, 1999, 32, 2646-2652.	4.8	5
210	Self-Diffusion and Cooperative Diffusion of Globular Proteins in Solution. Journal of Physical Chemistry B, 1999, 103, 10294-10299.	2.6	63
211	Light Scattering and Viscoelasticity of Aggregating and Gelling κ-Carrageenan. Macromolecules, 1999, 32, 2610-2616.	4.8	48
212	Dynamics of Poly(propylene sulfide) Studied by Dynamic Mechanical Measurements and Dielectric Spectroscopy. Macromolecules, 1999, 32, 7530-7536.	4.8	23
213	Kinetics of Aggregation and Gelation of Globular Proteins after Heat-Induced Denaturation. Macromolecules, 1999, 32, 6120-6127.	4.8	155
214	H NMR Study of the Association of Hydrophobically End-Capped Poly(ethylene oxide). Macromolecules, 1998, 31, 4035-4037.	4.8	27
215	Dynamics of Linear and Star Poly(oxypropylene) Studied by Dielectric Spectroscopy and Rheology. Macromolecules, 1998, 31, 2578-2585.	4.8	69
216	Evolution of the dynamic mechanical relaxations during the gel formation. Macromolecular Symposia, 1997, 122, 179-184.	0.7	4

#	Article	IF	CITATIONS
217	Viscoelastic Relaxation of Polyurethane at Different Stages of the Gel Formation. 2. Solâ^'Gel Transition Dynamics. Macromolecules, 1997, 30, 5897-5904.	4.8	34
218	Viscoelastic Relaxation of Polyurethane at Different Stages of the Gel Formation. 1. Glass Transition Dynamics. Macromolecules, 1997, 30, 5893-5896.	4.8	14
219	Association of Hydrophobically End-Capped Poly(ethylene oxide). Macromolecules, 1997, 30, 4952-4958.	4.8	129
220	2460-2466.	4.8	10
221	Cooperative Diffusion of Concentrated Polymer Solutions:Â A Static and Dynamic Light Scattering Study of Polystyrene in DOP. Macromolecules, 1996, 29, 1698-1704.	4.8	33
222	The effect of temperature and ionic strength on the dimerisation of β-lactoglobulin. International Journal of Biological Macromolecules, 1996, 19, 213-221.	7.5	176
223	Dynamic Viscoelastic Characterization of a Polyurethane Network Formation. Macromolecules, 1996, 29, 2260-2264.	4.8	41
224	Telechelic ionomers studied by light scattering and dynamic mechanical measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 112, 155-162.	4.7	13
225	Slow dynamics in gels. Journal of Non-Newtonian Fluid Mechanics, 1996, 67, 311-323.	2.4	5
226	A Comparison of the Structure of β-Lactoglobulin Aggregates Formed at pH7 and pH2. International Journal of Polymer Analysis and Characterization, 1996, 2, 115-119.	1.9	24
227	Analysis of Relaxation Functions Characterized by a Broad Monomodal Relaxation Time Distribution. Journal De Physique II, 1996, 6, 697-711.	0.9	11
228	Transition between flocculation and percolation of a diffusion-limited cluster-cluster aggregation process using three-dimensional Monte Carlo simulation. Physical Review B, 1995, 51, 11348-11357.	3.2	79
229	Dynamic Properties of the Transient Network formed by Telechelic Ionomers Studied by Dynamic Light Scattering and Dynamic Mechanical Analysis. Macromolecules, 1995, 28, 8504-8510.	4.8	29
230	Characterization of Polydisperse Solutions of Branched Poly(methyl methacrylate) Using Size Exclusion Chromatography with Online Multiangle Light Scattering and Viscosity Detection. Macromolecules, 1995, 28, 6819-6824.	4.8	26
231	Static structure factor of dilute solutions of polydisperse fractal aggregates. Physical Review B, 1994, 50, 16357-16363.	3.2	35
232	Structure and distribution of aggregates formed after heat-induced denaturation of globular proteins. Macromolecules, 1994, 27, 583-589.	4.8	156
233	Polarized and depolarized light scattering of concentrated polystyrene solutions. [Erratum to document cited in CA121:84571]. Macromolecules, 1994, 27, 4020-4020.	4.8	0
234	Polarized and Depolarized Light Scattering of Concentrated Polystyrene Solutions. Macromolecules, 1994, 27, 2470-2480.	4.8	21

#	Article	IF	CITATIONS
235	Polarized and depolarized dynamic light scattering of concentrated polystyrene solutions. Macromolecular Symposia, 1994, 79, 139-152.	0.7	Ο
236	Static and dynamic light-scattering studies on semidilute solutions of polystyrene in cyclohexane as a function of temperature. Macromolecules, 1990, 23, 3150-3155.	4.8	20
237	A comparison of relaxation time distributions obtained from dynamic light scattering and dynamic mechanical measurements for high-molecular-weight polystyrene in entangled solutions. Macromolecules, 1990, 23, 5088-5096.	4.8	54
238	Relaxation time distributions of entangled polymer solutions from dynamic light scattering and dynamic mechanical measurements. Macromolecules, 1990, 23, 357-359.	4.8	22
239	Dynamic behavior of .THETA. solutions of polystyrene investigated by dynamic light scattering. Macromolecules, 1990, 23, 1165-1174.	4.8	86
240	The ionic strength dependence of the second virial coefficient of low molar mass DNA fragments in aqueous solutions. Macromolecules, 1989, 22, 438-444.	4.8	53
241	The internal modes of polystyrene single coils studied using dynamic light scattering. Macromolecules, 1989, 22, 2795-2801.	4.8	21
242	Dynamic light scattering by aqueous solutions of low-molar-mass DNA fragments in the presence of sodium chloride. Macromolecules, 1989, 22, 2348-2356.	4.8	38
243	Chapter 3. Structure of Self-Assembled Globular Proteins. , 0, , 35-56.		2