Carmen Garcia-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5844041/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinically used JAK inhibitor blunts dsRNAâ€induced inflammation and calcification in aortic valve interstitial cells. FEBS Journal, 2021, 288, 6528-6542.	4.7	4
2	Interferons Are Pro-Inflammatory Cytokines in Sheared-Stressed Human Aortic Valve Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 10605.	4.1	5
3	Role of Toll Like Receptor 4 in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 1588.	4.8	68
4	Lipopolysaccharide and interferon-l ³ team up to activate HIF-11± via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2168-2179.	3.8	40
5	Calcification Induced by Type I Interferon in Human Aortic Valve Interstitial Cells Is Larger in Males and Blunted by a Janus Kinase Inhibitor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2148-2159.	2.4	43
6	Toll-Like Receptors, Inflammation, and Calcific Aortic Valve Disease. Frontiers in Physiology, 2018, 9, 201.	2.8	46
7	Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. Journal of Neuroinflammation, 2017, 14, 24.	7.2	98
8	The Flavone Luteolin Inhibits Liver X Receptor Activation. Journal of Natural Products, 2016, 79, 1423-1428.	3.0	32
9	The Calcium-Sensing Receptor in Health and Disease. International Review of Cell and Molecular Biology, 2016, 327, 321-369.	3.2	56
10	Synergy between Sphingosine 1-Phosphate and Lipopolysaccharide Signaling Promotes an Inflammatory, Angiogenic and Osteogenic Response in Human Aortic Valve Interstitial Cells. PLoS ONE, 2014, 9, e109081.	2.5	23
11	Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. Journal of Functional Foods, 2014, 10, 436-443.	3.4	62
12	Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. Journal of Ethnopharmacology, 2013, 148, 126-134.	4.1	97
13	Lipopolysaccharide and Sphingosine-1-Phosphate Cooperate To Induce Inflammatory Molecules and Leukocyte Adhesion in Endothelial Cells. Journal of Immunology, 2012, 189, 5402-5410.	0.8	64
14	Viral and bacterial patterns induce TLR-mediated sustained inflammation and calcification in aortic valve interstitial cells. International Journal of Cardiology, 2012, 158, 18-25.	1.7	42
15	Cymbopogon citratus as source of new and safe anti-inflammatory drugs: Bio-guided assay using lipopolysaccharide-stimulated macrophages. Journal of Ethnopharmacology, 2011, 133, 818-827.	4.1	80
16	Varicose Veins Show Enhanced Chemokine Expression. European Journal of Vascular and Endovascular Surgery, 2009, 38, 635-641.	1.5	36
17	Differential roles of PI3-Kinase, MAPKs and NF-κB on the manipulation of dendritic cell Th1/Th2 cytokine/chemokine polarizing profile. Molecular Immunology, 2009, 46, 2481-2492.	2.2	49
18	Selective attenuation of Toll-like receptor 2 signalling may explain the atheroprotective effect of sphingosine 1-phosphate. Cardiovascular Research, 2008, 79, 537-544.	3.8	44

#	Article	IF	CITATIONS
19	Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS. International Immunology, 2006, 18, 785-795.	4.0	62
20	A New Pharmacological Effect of Salicylates: Inhibition of NFAT-Dependent Transcription. Journal of Immunology, 2004, 173, 5721-5729.	0.8	42
21	A Conserved Docking Motif for CK1 Binding Controls the Nuclear Localization of NFAT1. Molecular and Cellular Biology, 2004, 24, 4184-4195.	2.3	168
22	Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS. International Immunology, 2004, 16, 1467-1475.	4.0	37
23	Activation of Monocytic Cells Through Fcγ Receptors Induces the Expression of Macrophage-Inflammatory Protein (MIP)-1α, MIP-1β, and RANTES. Journal of Immunology, 2002, 169, 3321-3328.	0.8	67
24	Requirement for integration of phorbol 12-myristate 13-acetate and calcium pathways is preserved in the transactivation domain of NFAT1. European Journal of Immunology, 2000, 30, 2432-2436.	2.9	19
25	Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO Journal, 2000, 19, 4783-4795.	7.8	274
26	Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Molecular Cell, 2000, 6, 539-550.	9.7	418
27	Nuclear Factor of Activated T Cells (NFAT)-dependent Transactivation Regulated by the Coactivators p300/CREB-binding Protein (CBP). Journal of Experimental Medicine, 1998, 187, 2031-2036.	8.5	175
28	The Role of N-Glycosylation for Functional Expression of the Human Platelet-activating Factor Receptor. Journal of Biological Chemistry, 1995, 270, 25178-25184.	3.4	56
29	Effect of immunological stimulation on the production of platelet-activating factor by rat peritoneal cells: its relevance to anaphylactic reactions. Immunopharmacology, 1993, 26, 73-82.	2.0	8