
Cagla Eroglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. Cell, 2009, 139, 380-392.	28.9	758
2	Cell Biology of Astrocyte-Synapse Interactions. Neuron, 2017, 96, 697-708.	8.1	704
3	Regulation of synaptic connectivity by glia. Nature, 2010, 468, 223-231.	27.8	668
4	Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020370.	5.5	560
5	Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E440-9.	7.1	480
6	Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature, 2017, 551, 192-197.	27.8	343
7	Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature, 2013, 497, 369-373.	27.8	244
8	Rapid Golgi Analysis Method for Efficient and Unbiased Classification of Dendritic Spines. PLoS ONE, 2014, 9, e107591.	2.5	243
9	Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin. Cell, 2016, 164, 183-196.	28.9	233
10	Thrombospondins 1 and 2 are Necessary for Synaptic Plasticity and Functional Recovery after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1722-1732.	4.3	228
11	Quantifying Synapses: an Immunocytochemistry-based Assay to Quantify Synapse Number. Journal of Visualized Experiments, 2010, , .	0.3	225
12	Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biology, 2012, 31, 170-177.	3.6	152
13	Molecular mechanisms of astrocyte-induced synaptogenesis. Current Opinion in Neurobiology, 2017, 45, 113-120.	4.2	143
14	Astrocytes refine cortical connectivity at dendritic spines. ELife, 2014, 3, .	6.0	139
15	The interplay between neurons and glia in synapse development and plasticity. Current Opinion in Neurobiology, 2017, 42, 1-8.	4.2	138
16	Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature, 2020, 588, 296-302.	27.8	130
17	Huntingtin Is Required for Normal Excitatory Synapse Development in Cortical and Striatal Circuits. Journal of Neuroscience, 2014, 34, 9455-9472.	3.6	125
18	Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nature Communications, 2017, 8, 14405.	12.8	121

CAGLA EROGLU

#	Article	IF	CITATIONS
19	Thrombospondin receptor α2Î-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. Journal of Cell Biology, 2018, 217, 3747-3765.	5.2	116
20	Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States. Journal of Neuroscience, 2012, 32, 8977-8987.	3.6	114
21	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
22	The role of astrocyte-secreted matricellular proteins in central nervous system development and function. Journal of Cell Communication and Signaling, 2009, 3, 167-176.	3.4	102
23	Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10219-10224.	7.1	96
24	Adolescent Intermittent Alcohol Exposure: Persistence of Structural and Functional Hippocampal Abnormalities into Adulthood. Alcoholism: Clinical and Experimental Research, 2015, 39, 989-997.	2.4	89
25	Circuit-Selective Striatal Synaptic Dysfunction in the Sapap3 Knockout Mouse Model of Obsessive-Compulsive Disorder. Biological Psychiatry, 2014, 75, 623-630.	1.3	85
26	An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and Infection. Neuron, 2018, 97, 125-138.e5.	8.1	79
27	Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell, 2019, 51, 7-20.e6.	7.0	74
28	Phospholipid Membrane Composition Affects EGF Receptor and Notch Signaling through Effects on Endocytosis during Drosophila Development. Developmental Cell, 2003, 5, 559-570.	7.0	62
29	Adolescent Intermittent Alcohol Exposure: Dysregulation of Thrombospondins and Synapse Formation are Associated with Decreased Neuronal Density in the Adult Hippocampus. Alcoholism: Clinical and Experimental Research, 2015, 39, 2403-2413.	2.4	55
30	Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Reports, 2002, 3, 491-496.	4.5	52
31	HepaCAM controls astrocyte self-organization and coupling. Neuron, 2021, 109, 2427-2442.e10.	8.1	52
32	Central Mechanisms Mediating Thrombospondin-4-induced Pain States. Journal of Biological Chemistry, 2016, 291, 13335-13348.	3.4	46
33	Look who is weaving the neural web: glial control of synapse formation. Current Opinion in Neurobiology, 2009, 19, 491-497.	4.2	45
34	Role of astrocytes in synapse formation and maturation. Current Topics in Developmental Biology, 2021, 142, 371-407.	2.2	36
35	Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Reports, 2020, 30, 642-657.e6.	6.4	34
36	The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Clia, 2022, 70, 1467-1483.	4.9	33

CAGLA EROGLU

#	Article	IF	CITATIONS
37	Neuroligins Provide Molecular Links Between Syndromic and Nonsyndromic Autism. Science Signaling, 2013, 6, re4.	3.6	29
38	Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins. Journal of Neuroscience, 2015, 35, 15649-15665.	3.6	29
39	Cell adhesion molecules regulating astrocyte–neuron interactions. Current Opinion in Neurobiology, 2021, 69, 170-177.	4.2	29
40	Control of neural development and function by glial neuroligins. Current Opinion in Neurobiology, 2019, 57, 163-170.	4.2	27
41	Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity. Journal of Neuroscience, 2018, 38, 2923-2943.	3.6	26
42	Acute post-injury blockade of α2Î^1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Reports, 2021, 34, 108667.	6.4	23
43	Pharmacological characterization and immunoaffinity purification of metabotropic glutamate receptor from Drosophila overexpressed in Sf9 cells. Protein Expression and Purification, 2003, 30, 275-282.	1.3	19
44	Emerging roles for α2δ subunits in calcium channel function and synaptic connectivity. Current Opinion in Neurobiology, 2020, 63, 162-169.	4.2	15
45	Glia as Active Participants in the Development and Function of Synapses. , 2008, , 683-714.		10
46	Developmental onset of enduring <scp>longâ€ŧerm</scp> potentiation in mouse hippocampus. Hippocampus, 2020, 30, 1298-1312.	1.9	8
47	Autism-associated mutation in Hevin/Sparcl1 induces endoplasmic reticulum stress through structural instability. Scientific Reports, 2022, 12, .	3.3	8
48	Astrocytes "Chordinate―Synapse Maturation and Plasticity. Neuron, 2018, 100, 1010-1012.	8.1	5
49	Building and destroying synaptic bridges: How do Hevin/Sparcl1, SPARC, and MDGAs modify trans-synaptic neurexin-neuroligin interactions?. Structure, 2021, 29, 635-637.	3.3	5
			_

50 Astrocytes and synaptogenesis. , 2020, , 55-75.

1