Katharina Schallmoser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergy of Human Platelet-Derived Extracellular Vesicles with Secretome Proteins Promotes Regenerative Functions. Biomedicines, 2022, 10, 238.	3.2	19
2	Batch Effects during Human Bone Marrow Stromal Cell Propagation Prevail Donor Variation and Culture Duration: Impact on Genotype, Phenotype and Function. Cells, 2022, 11, 946.	4.1	12
3	A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. Journal of Extracellular Vesicles, 2022, 11, e12207.	12.2	70
4	Acoustophoresis Enables the Labelâ€Free Separation of Functionally Different Subsets of Cultured Bone Marrow Stromal Cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 476-487.	1.5	12
5	Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics, 2021, 11, 8430-8447.	10.0	31
6	Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Scientific Reports, 2021, 11, 5944.	3.3	20
7	Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 3890.	4.1	18
8	Human Platelet Lysate for Good Manufacturing Practice-Compliant Cell Production. International Journal of Molecular Sciences, 2021, 22, 5178.	4.1	31
9	Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. International Journal of Molecular Sciences, 2021, 22, 8224.	4.1	4
10	Heparin and Derivatives for Advanced Cell Therapies. International Journal of Molecular Sciences, 2021, 22, 12041.	4.1	7
11	Scalable Enrichment of Immunomodulatory Human Acute Myeloid Leukemia Cell Line-Derived Extracellular Vesicles. Cells, 2021, 10, 3321.	4.1	3
12	Production and Quality Requirements of Human Platelet Lysate: A Position Statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends in Biotechnology, 2020, 38, 13-23.	9.3	82
13	Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. Journal of Molecular Medicine, 2020, 98, 193-207.	3.9	17
14	Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo. Clinical and Translational Medicine, 2020, 10, e262.	4.0	28
15	Heparin Differentially Impacts Gene Expression of Stromal Cells from Various Tissues. Scientific Reports, 2019, 9, 7258.	3.3	16
16	Human platelet lysate current standards and future developments. Transfusion, 2019, 59, 1407-1413.	1.6	61
17	Upregulation of mitotic bookmarking factors during enhanced proliferation of human stromal cells in human platelet lysate. Journal of Translational Medicine, 2019, 17, 432.	4.4	13
18	International Forum on <scp>GMP</scp> â€grade human platelet lysate for cell propagation: summary. Vox Sanguinis, 2018, 113, 80-87.	1.5	45

#	Article	IF	CITATIONS
19	International Forum on GMPâ€grade human platelet lysate for cell propagation. Vox Sanguinis, 2018, 113, e1-e25.	1.5	11
20	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21.	28.9	425
21	Selection of Tissue Factor-Deficient Cell Transplants as a Novel Strategy for Improving Hemocompatibility of Human Bone Marrow Stromal Cells. Theranostics, 2018, 8, 1421-1434.	10.0	47
22	An alternative mini buffy coat preparation method for adult patients with extracorporeal photopheresis contraindications. Journal of Clinical Apheresis, 2017, 32, 12-15.	1.3	5
23	Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation. Stem Cells, 2017, 35, 1233-1245.	3.2	30
24	DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nature Medicine, 2017, 23, 386-395.	30.7	193
25	A Good Manufacturing Practice–grade standard protocol for exclusively human mesenchymal stromal cell–derived extracellular vesicles. Cytotherapy, 2017, 19, 458-472.	0.7	156
26	Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nature Protocols, 2017, 12, 2169-2188.	12.0	57
27	Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. International Journal of Molecular Sciences, 2017, 18, 1190.	4.1	213
28	A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nature Medicine, 2016, 22, 812-821.	30.7	181
29	Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?. Biomaterials, 2016, 76, 371-387.	11.4	390
30	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
31	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
32	Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. Journal of Translational Medicine, 2015, 13, 354.	4.4	39
33	A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Research and Therapy, 2015, 6, 236.	5.5	97
34	Iron depletion with a novel apheresis system in patients with hemochromatosis. Transfusion, 2015, 55, 996-1000.	1.6	9
35	Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood, 2015, 125, 249-260.	1.4	201
36	Lesion-Induced Accumulation of Platelets Promotes Survival of Adult Neural Stem / Progenitor Cells. Experimental Neurology, 2015, 269, 75-89.	4.1	33

#	Article	IF	CITATIONS
37	Tâ€Cell death, phosphatidylserine exposure and reduced proliferation rate to validate extracorporeal photochemotherapy. Vox Sanguinis, 2015, 108, 82-88.	1.5	13
38	Platelet Antibody Analysis by Three Different Tests. Journal of Clinical Laboratory Analysis, 2015, 29, 198-202.	2.1	4
39	Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 2014, 123, 2691-2702.	1.4	229
40	Therapeutic red blood cell exchange in a child with sickle cell anaemia using the Spectra Optia [®] apheresis system. Transfusion Medicine, 2014, 24, 184-186.	1.1	3
41	Tri-lineage potential of intraoral tissue-derived mesenchymal stromal cells. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 110-118.	1.7	9
42	Donor selection and release criteria of cellular therapy products. Vox Sanguinis, 2013, 104, 67-91.	1.5	8
43	Generation of a Pool of Human Platelet Lysate and Efficient Use in Cell Culture. Methods in Molecular Biology, 2013, 946, 349-362.	0.9	78
44	A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 153-161.	1.7	45
45	Identification of an Effective Early Signaling Signature during Neo-Vasculogenesis In Vivo by Ex Vivo Proteomic Profiling. PLoS ONE, 2013, 8, e66909.	2.5	14
46	Reticulocyte hemoglobin content allows early and reliable detection of functional iron deficiency in blood donors. Clinica Chimica Acta, 2012, 413, 678-682.	1.1	35
47	Oxygen Sensing Mesenchymal Progenitors Promote Neo-Vasculogenesis in a Humanized Mouse Model In Vivo. PLoS ONE, 2012, 7, e44468.	2.5	52
48	Thirdâ€party mesenchymal stromal cell infusion is associated with a decrease in thrombotic microangiopathy symptoms observed postâ€hematopoietic stem cell transplantation. Pediatric Transplantation, 2012, 16, 131-136.	1.0	5
49	Influence of multicomponent apheresis on donors' haematological and coagulation parameters, iron storage and platelet function. Vox Sanguinis, 2012, 103, 194-200.	1.5	8
50	Animal Protein–Free Expansion of Human Mesenchymal Stem/Progenitor Cells. , 2012, , 53-69.		1
51	Collagen Receptor-Mediated Mechanochemical Signaling Contributes to Human Pro-Angiogenic Mesenchymal Stem/Progenitor Cell-Induced Neo-Vasculogenesis. Blood, 2012, 120, 5196-5196.	1.4	0
52	Single Center Experience with the Nanoparticle-Based Flow Immunoassay for Diagnosis of Heparin-Induced Thrombocytopenia (HIT) Blood, 2012, 120, 2189-2189.	1.4	0
53	Organotypic Epigenetic Signature Predicts Bone and Marrow Niche Forming Capacity of Stromal Progenitors in a Novel Mouse Model in Vivo Blood, 2012, 120, 2987-2987.	1.4	0
54	A Novel Role for Mesenchymal Stem/Progenitor Cells As Hypoxia Sensors During Initiation of Neo-Vasculogenesis in Vivo. Blood, 2012, 120, 613-613.	1.4	21

#	Article	IF	CITATIONS
55	Therapeutic Red Blood Cell Exchange in Sickle Cell Anaemia Using the Spectra Optia® Apheresis System. Blood, 2012, 120, 4383-4383.	1.4	3
56	Maintenance of Osteogenic Differentiation Capacity of MSPC Despite Amplified Proliferation Under Elevated Oxgen Conditions. Blood, 2012, 120, 1916-1916.	1.4	4
57	Pro-angiogenic induction of myeloid cells for therapeutic angiogenesis can induce mitogen-activated protein kinase p38-dependent foam cell formation. Cytotherapy, 2011, 13, 503-512.	0.7	9
58	Immunomodulative Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells Cultured in Human Platelet Lysate. Journal of Clinical Immunology, 2011, 31, 1143-1156.	3.8	71
59	Dissociation of In Vivo and in Vitro Differentiation Capacity of Human Mesenchymal Stem Cells Is Reflected by a Tissue Specific Epigenetic Memory. Blood, 2011, 118, 2386-2386.	1.4	Ο
60	Platelet-Derived Factors Allow Human Mesenchymal Stem Cells to Spontaneously Undergo Endochondral Bone Differentiation and Provide Bone Marrow Support in a Xenogenic In Vivo Model. Blood, 2011, 118, 1322-1322.	1.4	1
61	Neo-Vasculogenesis In Vivo Is Facilitated by Oxygen Sensing Mesenchymal Stem and Pogenitor Cells. Blood, 2011, 118, 699-699.	1.4	Ο
62	Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, 2010, 95, 867-874.	3.5	120
63	Function and activation state of platelets in vitro depend on apheresis modality. Vox Sanguinis, 2010, 99, 332-340.	1.5	26
64	Pro–angiogenic Induction of Myeloid Cells for Therapeutic Angiogenesis Can Favor MAPK p38–dependent Foam Cell Formation. Blood, 2010, 116, 4442-4442.	1.4	0
65	Human Vascular Progenitor Cells Can Guide Mesodermal Lineage Choice of Mesenchymal Stem and Progenitor Cells After Co-Transplantation In Vivo Blood, 2010, 116, 939-939.	1.4	Ο
66	Replicative Senescence-Associated Gene Expression Changes In Human MSPCs Independent of Genomic Variations. Blood, 2010, 116, 4775-4775.	1.4	0
67	Oxygen Sensing of Mesenchymal Stem and Progenitor Cells Facilitates Neo-Vasculogenesis In Vivo. Blood, 2010, 116, 4313-4313.	1.4	0
68	Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Bio-Medical Materials and Engineering, 2009, 19, 271-276.	0.6	25
69	The particle gel immunoassay as a rapid test to rule out heparin-induced thrombocytopenia?. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 781-783.	0.8	15
70	Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells, 2009, 27, 2331-2341.	3.2	420
71	Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures. Journal of Visualized Experiments, 2009, , .	0.3	97
72	Humanized large-scale expanded endothelial colony–forming cells function in vitro and in vivo. Blood, 2009, 113, 6716-6725.	1.4	201

#	Article	IF	CITATIONS
73	Thrombin generation before and after multicomponent blood collection. Transfusion, 2008, 48, 1584-1590.	1.6	5
74	Clinical Protocols for the Isolation and Expansion of Mesenchymal Stromal Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 4-4.	1.6	66
75	Rapid Large-Scale Expansion of Functional Mesenchymal Stem Cells from Unmanipulated Bone Marrow Without Animal Serum. Tissue Engineering - Part C: Methods, 2008, 14, 185-196.	2.1	169
76	Excluding HIT Diagnosis by a Particle Gel Immunoassay Blood, 2008, 112, 3405-3405.	1.4	0
77	Combined Action of Endothelial and Mesenchymal Niche Cells to Amplify Hematopoietic Progenitor Expansion in a Humanized System. Blood, 2008, 112, 2410-2410.	1.4	0
78	Making Functional Endothelial Progenitors: Humanized Large-Scale Animal Serum-Free Propagated Adult Blood-Derived Endothelial Colony-Forming Cells Assemble Stable Perfused Vessels in Vivo Blood, 2008, 112, 1882-1882.	1.4	0
79	Genomic Stability and Safety of MSCs after Animal Serum-Free Humanized Clinical Scale Propagation Blood, 2008, 112, 2307-2307.	1.4	0
80	Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regenerative Medicine, 2007, 2, 371-382.	1.7	147
81	Immune Cells Mimic the Morphology of Endothelial Progenitor Colonies In Vitro. Stem Cells, 2007, 25, 1746-1752.	3.2	164
82	Two steps to functional mesenchymal stromal cells for clinical application. Transfusion, 2007, 47, 1426-1435.	1.6	114
83	Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 2007, 47, 1436-1446.	1.6	437
84	Delayed detectability of anti-HPA-3a by the MAIPA assay in a severe neonatal alloimmune thrombocytopenia, but successful transfusion of incompatible donor platelets: a case report. Vox Sanguinis, 2006, 91, 181-183.	1.5	15
85	Specificities of Platelet Autoantibodies and Platelet Activation in Lupus Anticoagulant Patients: A Relation to their History of Thromboembolic Disease. Lupus, 2006, 15, 507-514.	1.6	10
86	Immune Cells Mimic Endothelial Progenitor Colonies Blood, 2006, 108, 1811-1811.	1.4	0
87	Human Mesenchymal Stem Cell Therapy: Platelet Lysate Supports Efficient Preclinical Expansion Blood, 2006, 108, 3649-3649.	1.4	0
88	Human Platelet-Derived Factors Regulate Mesenchymal Stem Cell Gene Expression Blood, 2006, 108, 4255-4255.	1.4	7
89	Severe thrombocytopenia due to host-derived anti-HPA-1a after non-myeloablative allogeneic haematopoietic stem cell transplantation for multiple myeloma: a case report. Vox Sanguinis, 2005, 89, 257-260.	1.5	9
90	The Fcl̂³RIIa polymorphism R/H131, autoantibodies against the platelet receptors GPIbl̂± and Fcl̂³RIIa and a risk for thromboembolism in lupus anticoagulant patients. Thrombosis and Haemostasis, 2005, 93, 544-548.	3.4	11

#	Article	IF	CITATIONS
91	Lack of association of the Glu298Asp polymorphism of endothelial nitric oxide synthase with manifest coronary artery disease, carotid atherosclerosis and forearm vascular reactivity in two Austrian populations. European Journal of Clinical Investigation, 2003, 33, 191-198.	3.4	32
92	A novel splice-site mutation in intron 7 causes more severe hypercholesterolemia than a combined FH-FDB defect. Atherosclerosis, 2001, 157, 524-525.	0.8	5
93	Factor II G20210A and Factor V G1691A Gene Mutations and Peripheral Arterial Occlusive Disease. Thrombosis and Haemostasis, 2000, 83, 20-22.	3.4	30
94	Prothrombin G20210A, Factor V Leiden, and Factor XIII Val34Leu. Thrombosis Research, 2000, 99, 35-39.	1.7	58
95	C242T polymorphism of the p22 phox gene is not associated with peripheral arterial occlusive disease. Atherosclerosis, 2000, 152, 175-179.	0.8	20
96	GMP-Compliant Propagation of Human Multipotent Mesenchymal Stromal Cells. , 0, , 97-115.		3