Katharina Schallmoser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843320/publications.pdf

Version: 2024-02-01

96 papers

10,400 citations

33 h-index 79 g-index

100 all docs

100 docs citations

100 times ranked 15387 citing authors

#	Article	IF	CITATIONS
1	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
2	Applying extracellular vesicles based therapeutics in clinical trials $\hat{a} \in \text{``an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.}$	12.2	1,020
3	Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 2007, 47, 1436-1446.	1.6	437
4	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21.	28.9	425
5	Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells, 2009, 27, 2331-2341.	3.2	420
6	Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?. Biomaterials, 2016, 76, 371-387.	11.4	390
7	Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 2014, 123, 2691-2702.	1.4	229
8	Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. International Journal of Molecular Sciences, 2017, 18, 1190.	4.1	213
9	Humanized large-scale expanded endothelial colony–forming cells function in vitro and in vivo. Blood, 2009, 113, 6716-6725.	1.4	201
10	Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood, 2015, 125, 249-260.	1.4	201
11	DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nature Medicine, 2017, 23, 386-395.	30.7	193
12	A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nature Medicine, 2016, 22, 812-821.	30.7	181
13	Rapid Large-Scale Expansion of Functional Mesenchymal Stem Cells from Unmanipulated Bone Marrow Without Animal Serum. Tissue Engineering - Part C: Methods, 2008, 14, 185-196.	2.1	169
14	Immune Cells Mimic the Morphology of Endothelial Progenitor Colonies In Vitro. Stem Cells, 2007, 25, 1746-1752.	3.2	164
15	A Good Manufacturing Practice–grade standard protocol for exclusively human mesenchymal stromal cell–derived extracellular vesicles. Cytotherapy, 2017, 19, 458-472.	0.7	156
16	Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regenerative Medicine, 2007, 2, 371-382.	1.7	147
17	Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, 2010, 95, 867-874.	3.5	120
18	Two steps to functional mesenchymal stromal cells for clinical application. Transfusion, 2007, 47, 1426-1435.	1.6	114

#	Article	IF	CITATIONS
19	Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures. Journal of Visualized Experiments, 2009, , .	0.3	97
20	A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Research and Therapy, 2015, 6, 236.	5.5	97
21	Production and Quality Requirements of Human Platelet Lysate: A Position Statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends in Biotechnology, 2020, 38, 13-23.	9.3	82
22	Generation of a Pool of Human Platelet Lysate and Efficient Use in Cell Culture. Methods in Molecular Biology, 2013, 946, 349-362.	0.9	78
23	Immunomodulative Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells Cultured in Human Platelet Lysate. Journal of Clinical Immunology, 2011, 31, 1143-1156.	3.8	71
24	A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. Journal of Extracellular Vesicles, 2022, 11 , e 12207 .	12.2	70
25	Clinical Protocols for the Isolation and Expansion of Mesenchymal Stromal Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 4-4.	1.6	66
26	Human platelet lysate current standards and future developments. Transfusion, 2019, 59, 1407-1413.	1.6	61
27	Prothrombin G20210A, Factor V Leiden, and Factor XIII Val34Leu. Thrombosis Research, 2000, 99, 35-39.	1.7	58
28	Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nature Protocols, 2017, 12, 2169-2188.	12.0	57
29	Oxygen Sensing Mesenchymal Progenitors Promote Neo-Vasculogenesis in a Humanized Mouse Model In Vivo. PLoS ONE, 2012, 7, e44468.	2.5	52
30	Selection of Tissue Factor-Deficient Cell Transplants as a Novel Strategy for Improving Hemocompatibility of Human Bone Marrow Stromal Cells. Theranostics, 2018, 8, 1421-1434.	10.0	47
31	A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 153-161.	1.7	45
32	International Forum on <scp>GMP</scp> â€grade human platelet lysate for cell propagation: summary. Vox Sanguinis, 2018, 113, 80-87.	1.5	45
33	Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. Journal of Translational Medicine, 2015, 13, 354.	4.4	39
34	Reticulocyte hemoglobin content allows early and reliable detection of functional iron deficiency in blood donors. Clinica Chimica Acta, 2012, 413, 678-682.	1.1	35
35	Lesion-Induced Accumulation of Platelets Promotes Survival of Adult Neural Stem / Progenitor Cells. Experimental Neurology, 2015, 269, 75-89.	4.1	33
36	Lack of association of the Glu298Asp polymorphism of endothelial nitric oxide synthase with manifest coronary artery disease, carotid atherosclerosis and forearm vascular reactivity in two Austrian populations. European Journal of Clinical Investigation, 2003, 33, 191-198.	3.4	32

#	Article	IF	CITATIONS
37	Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics, 2021, 11, 8430-8447.	10.0	31
38	Human Platelet Lysate for Good Manufacturing Practice-Compliant Cell Production. International Journal of Molecular Sciences, 2021, 22, 5178.	4.1	31
39	Factor II G20210A and Factor V G1691A Gene Mutations and Peripheral Arterial Occlusive Disease. Thrombosis and Haemostasis, 2000, 83, 20-22.	3.4	30
40	Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation. Stem Cells, 2017, 35, 1233-1245.	3.2	30
41	Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo. Clinical and Translational Medicine, 2020, 10, e262.	4.0	28
42	Function and activation state of platelets in vitro depend on apheresis modality. Vox Sanguinis, 2010, 99, 332-340.	1.5	26
43	Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Bio-Medical Materials and Engineering, 2009, 19, 271-276.	0.6	25
44	A Novel Role for Mesenchymal Stem/Progenitor Cells As Hypoxia Sensors During Initiation of Neo-Vasculogenesis in Vivo. Blood, 2012, 120, 613-613.	1.4	21
45	C242T polymorphism of the p22 phox gene is not associated with peripheral arterial occlusive disease. Atherosclerosis, 2000, 152, 175-179.	0.8	20
46	Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Scientific Reports, 2021, 11, 5944.	3.3	20
47	Synergy of Human Platelet-Derived Extracellular Vesicles with Secretome Proteins Promotes Regenerative Functions. Biomedicines, 2022, 10, 238.	3.2	19
48	Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 3890.	4.1	18
49	Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. Journal of Molecular Medicine, 2020, 98, 193-207.	3.9	17
50	Heparin Differentially Impacts Gene Expression of Stromal Cells from Various Tissues. Scientific Reports, 2019, 9, 7258.	3.3	16
51	Delayed detectability of anti-HPA-3a by the MAIPA assay in a severe neonatal alloimmune thrombocytopenia, but successful transfusion of incompatible donor platelets: a case report. Vox Sanguinis, 2006, 91, 181-183.	1.5	15
52	The particle gel immunoassay as a rapid test to rule out heparin-induced thrombocytopenia?. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 781-783.	0.8	15
53	Identification of an Effective Early Signaling Signature during Neo-Vasculogenesis In Vivo by Ex Vivo Proteomic Profiling. PLoS ONE, 2013, 8, e66909.	2.5	14
54	Tâ€Cell death, phosphatidylserine exposure and reduced proliferation rate to validate extracorporeal photochemotherapy. Vox Sanguinis, 2015, 108, 82-88.	1.5	13

#	Article	IF	CITATIONS
55	Upregulation of mitotic bookmarking factors during enhanced proliferation of human stromal cells in human platelet lysate. Journal of Translational Medicine, 2019, 17, 432.	4.4	13
56	Acoustophoresis Enables the Labelâ€Free Separation of Functionally Different Subsets of Cultured Bone Marrow Stromal Cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 476-487.	1.5	12
57	Batch Effects during Human Bone Marrow Stromal Cell Propagation Prevail Donor Variation and Culture Duration: Impact on Genotype, Phenotype and Function. Cells, 2022, 11, 946.	4.1	12
58	The Fc \hat{i}^3 RIIa polymorphism R/H131, autoantibodies against the platelet receptors GPlb \hat{i}^\pm and Fc \hat{i}^3 RIIa and a risk for thromboembolism in lupus anticoagulant patients. Thrombosis and Haemostasis, 2005, 93, 544-548.	3.4	11
59	International Forum on GMPâ€grade human platelet lysate for cell propagation. Vox Sanguinis, 2018, 113, e1-e25.	1.5	11
60	Specificities of Platelet Autoantibodies and Platelet Activation in Lupus Anticoagulant Patients: A Relation to their History of Thromboembolic Disease. Lupus, 2006, 15, 507-514.	1.6	10
61	Severe thrombocytopenia due to host-derived anti-HPA-1a after non-myeloablative allogeneic haematopoietic stem cell transplantation for multiple myeloma: a case report. Vox Sanguinis, 2005, 89, 257-260.	1.5	9
62	Pro-angiogenic induction of myeloid cells for therapeutic angiogenesis can induce mitogen-activated protein kinase p38-dependent foam cell formation. Cytotherapy, 2011, 13, 503-512.	0.7	9
63	Tri-lineage potential of intraoral tissue-derived mesenchymal stromal cells. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 110-118.	1.7	9
64	Iron depletion with a novel apheresis system in patients with hemochromatosis. Transfusion, 2015, 55, 996-1000.	1.6	9
65	Influence of multicomponent apheresis on donors' haematological and coagulation parameters, iron storage and platelet function. Vox Sanguinis, 2012, 103, 194-200.	1.5	8
66	Donor selection and release criteria of cellular therapy products. Vox Sanguinis, 2013, 104, 67-91.	1.5	8
67	Human Platelet-Derived Factors Regulate Mesenchymal Stem Cell Gene Expression Blood, 2006, 108, 4255-4255.	1.4	7
68	Heparin and Derivatives for Advanced Cell Therapies. International Journal of Molecular Sciences, 2021, 22, 12041.	4.1	7
69	A novel splice-site mutation in intron 7 causes more severe hypercholesterolemia than a combined FH-FDB defect. Atherosclerosis, 2001, 157, 524-525.	0.8	5
70	Thrombin generation before and after multicomponent blood collection. Transfusion, 2008, 48, 1584-1590.	1.6	5
71	Thirdâ€party mesenchymal stromal cell infusion is associated with a decrease in thrombotic microangiopathy symptoms observed postâ€hematopoietic stem cell transplantation. Pediatric Transplantation, 2012, 16, 131-136.	1.0	5
72	An alternative mini buffy coat preparation method for adult patients with extracorporeal photopheresis contraindications. Journal of Clinical Apheresis, 2017, 32, 12-15.	1.3	5

#	Article	IF	Citations
73	Platelet Antibody Analysis by Three Different Tests. Journal of Clinical Laboratory Analysis, 2015, 29, 198-202.	2.1	4
74	Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. International Journal of Molecular Sciences, 2021, 22, 8224.	4.1	4
75	Maintenance of Osteogenic Differentiation Capacity of MSPC Despite Amplified Proliferation Under Elevated Oxgen Conditions. Blood, 2012, 120, 1916-1916.	1.4	4
76	GMP-Compliant Propagation of Human Multipotent Mesenchymal Stromal Cells., 0,, 97-115.		3
77	Therapeutic red blood cell exchange in a child with sickle cell anaemia using the Spectra Optia [®] apheresis system. Transfusion Medicine, 2014, 24, 184-186.	1.1	3
78	Therapeutic Red Blood Cell Exchange in Sickle Cell Anaemia Using the Spectra Optia® Apheresis System. Blood, 2012, 120, 4383-4383.	1.4	3
79	Scalable Enrichment of Immunomodulatory Human Acute Myeloid Leukemia Cell Line-Derived Extracellular Vesicles. Cells, 2021, 10, 3321.	4.1	3
80	Animal Protein–Free Expansion of Human Mesenchymal Stem/Progenitor Cells. , 2012, , 53-69.		1
81	Platelet-Derived Factors Allow Human Mesenchymal Stem Cells to Spontaneously Undergo Endochondral Bone Differentiation and Provide Bone Marrow Support in a Xenogenic In Vivo Model. Blood, 2011, 118, 1322-1322.	1.4	1
82	Immune Cells Mimic Endothelial Progenitor Colonies Blood, 2006, 108, 1811-1811.	1.4	0
83	Human Mesenchymal Stem Cell Therapy: Platelet Lysate Supports Efficient Preclinical Expansion Blood, 2006, 108, 3649-3649.	1.4	O
84	Excluding HIT Diagnosis by a Particle Gel Immunoassay Blood, 2008, 112, 3405-3405.	1.4	0
85	Combined Action of Endothelial and Mesenchymal Niche Cells to Amplify Hematopoietic Progenitor Expansion in a Humanized System. Blood, 2008, 112, 2410-2410.	1.4	O
86	Making Functional Endothelial Progenitors: Humanized Large-Scale Animal Serum-Free Propagated Adult Blood-Derived Endothelial Colony-Forming Cells Assemble Stable Perfused Vessels in Vivo Blood, 2008, 112, 1882-1882.	1.4	0
87	Genomic Stability and Safety of MSCs after Animal Serum-Free Humanized Clinical Scale Propagation Blood, 2008, 112, 2307-2307.	1.4	O
88	Pro–angiogenic Induction of Myeloid Cells for Therapeutic Angiogenesis Can Favor MAPK p38–dependent Foam Cell Formation. Blood, 2010, 116, 4442-4442.	1.4	0
89	Human Vascular Progenitor Cells Can Guide Mesodermal Lineage Choice of Mesenchymal Stem and Progenitor Cells After Co-Transplantation In Vivo Blood, 2010, 116, 939-939.	1.4	O
90	Replicative Senescence-Associated Gene Expression Changes In Human MSPCs Independent of Genomic Variations. Blood, 2010, 116, 4775-4775.	1.4	0

#	Article	lF	CITATIONS
91	Oxygen Sensing of Mesenchymal Stem and Progenitor Cells Facilitates Neo-Vasculogenesis In Vivo. Blood, 2010, 116, 4313-4313.	1.4	O
92	Dissociation of In Vivo and in Vitro Differentiation Capacity of Human Mesenchymal Stem Cells Is Reflected by a Tissue Specific Epigenetic Memory. Blood, 2011, 118, 2386-2386.	1.4	0
93	Neo-Vasculogenesis In Vivo Is Facilitated by Oxygen Sensing Mesenchymal Stem and Pogenitor Cells. Blood, 2011, 118, 699-699.	1.4	O
94	Collagen Receptor-Mediated Mechanochemical Signaling Contributes to Human Pro-Angiogenic Mesenchymal Stem/Progenitor Cell-Induced Neo-Vasculogenesis. Blood, 2012, 120, 5196-5196.	1.4	0
95	Single Center Experience with the Nanoparticle-Based Flow Immunoassay for Diagnosis of Heparin-Induced Thrombocytopenia (HIT) Blood, 2012, 120, 2189-2189.	1.4	O
96	Organotypic Epigenetic Signature Predicts Bone and Marrow Niche Forming Capacity of Stromal Progenitors in a Novel Mouse Model in Vivo Blood, 2012, 120, 2987-2987.	1.4	0