
Steven A Carr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843024/publications.pdf

Version: 2024-02-01

STEVEN & CADD

#	Article	IF	CITATIONS
1	The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 2006, 313, 1929-1935.	12.6	4,472
2	A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology. Cell, 2008, 134, 112-123.	28.9	1,766
3	Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nature Biotechnology, 2006, 24, 971-983.	17.5	1,577
4	Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534, 55-62.	27.8	1,384
5	Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 2014, 343, 301-305.	12.6	1,371
6	Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513, 382-387.	27.8	1,219
7	Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. Science, 2013, 339, 1328-1331.	12.6	1,023
8	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	17.5	958
9	The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Molecular and Cellular Proteomics, 2012, 11, M111.014647.	3.8	920
10	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	28.9	804
11	The extracellular matrix: Tools and insights for the "omics―era. Matrix Biology, 2016, 49, 10-24.	3.6	793
12	Lenalidomide induces ubiquitination and degradation of CK1 \hat{l} ± in del(5q) MDS. Nature, 2015, 523, 183-188.	27.8	648
13	Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution. Molecular and Cellular Proteomics, 2007, 6, 2212-2229.	3.8	619
14	Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity, 2017, 46, 315-326.	14.3	596
15	Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Journal of Clinical Investigation, 2011, 121, 1402-1411.	8.2	537
16	Integrated proteomic analysis of post-translational modifications by serial enrichment. Nature Methods, 2013, 10, 634-637.	19.0	534
17	Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Proteome Research, 2010, 9, 761-776.	3.7	505
18	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	28.9	498

#	Article	IF	CITATIONS
19	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	28.9	430
20	Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. Molecular Cell, 2014, 55, 332-341.	9.7	414
21	Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods, 2013, 10, 28-34.	19.0	412
22	Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nature Protocols, 2016, 11, 456-475.	12.0	411
23	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	28.9	410
24	Dynamic profiling of the protein life cycle in response to pathogens. Science, 2015, 347, 1259038.	12.6	408
25	Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry. Nature Protocols, 2018, 13, 1632-1661.	12.0	377
26	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	16.8	327
27	Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell, 2016, 166, 1295-1307.e21.	28.9	324
28	A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nature Biotechnology, 2020, 38, 199-209.	17.5	324
29	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	3.8	323
30	The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561, 132-136.	27.8	303
31	Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell, 2018, 173, 90-103.e19.	28.9	296
32	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	28.9	296
33	Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. ELife, 2014, 3, e01308.	6.0	291
34	Refined Preparation and Use of Anti-diglycine Remnant (K-ε-GG) Antibody Enables Routine Quantification of 10,000s of Ubiquitination Sites in Single Proteomics Experiments. Molecular and Cellular Proteomics, 2013, 12, 825-831.	3.8	279
35	Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. ELife, 2017, 6, .	6.0	276
36	Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nature Biotechnology, 2009, 27, 190-198.	17.5	273

#	Article	IF	CITATIONS
37	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	28.9	273
38	Quantification of Cardiovascular Biomarkers in Patient Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution. Molecular and Cellular Proteomics, 2009, 8, 2339-2349.	3.8	263
39	Large-scale identification of ubiquitination sites by mass spectrometry. Nature Protocols, 2013, 8, 1950-1960.	12.0	256
40	TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Molecular and Cellular Proteomics, 2019, 18, 1468-1478.	3.8	245
41	The SARS-CoV-2 RNA–protein interactome in infected human cells. Nature Microbiology, 2021, 6, 339-353.	13.3	245
42	Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19609-19618.	7.1	244
43	Developing Multiplexed Assays for Troponin I and Interleukin-33 in Plasma by Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry. Clinical Chemistry, 2009, 55, 1108-1117.	3.2	243
44	Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature, 2021, 596, 119-125.	27.8	239
45	Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 1386-1391.	21.4	238
46	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	28.9	236
47	A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nature Biotechnology, 2011, 29, 635-643.	17.5	229
48	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	16.8	224
49	Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry. Analytical Chemistry, 2010, 82, 10116-10124.	6.5	220
50	Panorama: A Targeted Proteomics Knowledge Base. Journal of Proteome Research, 2014, 13, 4205-4210.	3.7	205
51	Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer, 2014, 14, 518.	2.6	204
52	A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation. Molecular Cell, 2015, 60, 816-827.	9.7	200
53	A Curated Resource for Phosphosite-specific Signature Analysis. Molecular and Cellular Proteomics, 2019, 18, 576-593.	3.8	197
54	Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nature Medicine, 2018, 24, 968-977.	30.7	196

#	Article	IF	CITATIONS
55	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	16.8	189
56	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	3.2	187
57	Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification by Multiple Reaction Monitoring Mass Spectrometry. Clinical Chemistry, 2010, 56, 291-305.	3.2	182
58	Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature, 2021, 595, 309-314.	27.8	181
59	Split-TurboID enables contact-dependent proximity labeling in cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12143-12154.	7.1	179
60	Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nature Methods, 2014, 11, 149-155.	19.0	178
61	Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma. Molecular and Cellular Proteomics, 2012, 11, M111.013854.	3.8	176
62	Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury. Molecular and Cellular Proteomics, 2015, 14, 2375-2393.	3.8	175
63	Aptamer-Based Proteomic Profiling Reveals Novel Candidate Biomarkers and Pathways in Cardiovascular Disease. Circulation, 2016, 134, 270-285.	1.6	172
64	Proximity labeling in mammalian cells with TurboID and split-TurboID. Nature Protocols, 2020, 15, 3971-3999.	12.0	171
65	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	28.9	170
66	iTRAQ Labeling is Superior to mTRAQ for Quantitative Global Proteomics and Phosphoproteomics. Molecular and Cellular Proteomics, 2012, 11, M111.014423.	3.8	159
67	Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. Molecular and Cellular Proteomics, 2015, 14, 2357-2374.	3.8	153
68	Accurate Inclusion Mass Screening. Molecular and Cellular Proteomics, 2008, 7, 1952-1962.	3.8	147
69	Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow. Molecular and Cellular Proteomics, 2015, 14, 2429-2440.	3.8	147
70	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
71	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	16.8	146
72	Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nature Medicine, 2017, 23, 1046-1054.	30.7	145

#	Article	IF	CITATIONS
73	Methods for Quantification of in vivo Changes in Protein Ubiquitination following Proteasome and Deubiquitinase Inhibition. Molecular and Cellular Proteomics, 2012, 11, 148-159.	3.8	140
74	Discovery of proteins associated with a predefined genomic locus via dCas9–APEX-mediated proximity labeling. Nature Methods, 2018, 15, 437-439.	19.0	133
75	Evaluation of Large Scale Quantitative Proteomic Assay Development Using Peptide Affinity-based Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.005645.	3.8	130
76	Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nature Biotechnology, 2022, 40, 209-217.	17.5	127
77	Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell, 2020, 180, 373-386.e15.	28.9	118
78	Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nature Methods, 2017, 14, 1167-1170.	19.0	114
79	Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 2017, 8, 14864.	12.8	112
80	Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction. Molecular and Cellular Proteomics, 2017, 16, 121-134.	3.8	111
81	Anti-apoptotic Protein BIRC5 Maintains Survival of HIV-1-Infected CD4+ T Cells. Immunity, 2018, 48, 1183-1194.e5.	14.3	109
82	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	7.1	105
83	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	3.8	104
84	Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Molecular and Cellular Proteomics, 2013, 12, 2623-2639.	3.8	100
85	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	28.9	98
86	<i>C1orf106</i> is a colitis risk gene that regulates stability of epithelial adherens junctions. Science, 2018, 359, 1161-1166.	12.6	95
87	Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes. Molecular and Cellular Proteomics, 2016, 15, 1622-1641.	3.8	92
88	Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics, 2012, 13, S9.	2.6	91
89	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	12.8	90
90	New mass spectral approaches to complex carbohydrate structure. Mass Spectrometry Reviews, 1983, 2, 153-221.	5.4	84

#	Article	IF	CITATIONS
91	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	6.4	83
92	Proteomic Profiling of the ECM of Xenograft Breast Cancer Metastases in Different Organs Reveals Distinct Metastatic Niches. Cancer Research, 2020, 80, 1475-1485.	0.9	79
93	Cancer proteogenomics: current impact and future prospects. Nature Reviews Cancer, 2022, 22, 298-313.	28.4	79
94	Microscaled proteogenomic methods for precision oncology. Nature Communications, 2020, 11, 532.	12.8	78
95	Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nature Communications, 2020, 11, 359.	12.8	75
96	Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nature Genetics, 2020, 52, 138-145.	21.4	73
97	Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nature Chemical Biology, 2016, 12, 102-108.	8.0	72
98	Crbn I391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood, 2018, 132, 1535-1544.	1.4	71
99	Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus–Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology, 2019, 157, 537-551.e9.	1.3	71
100	Landscape of helper and regulatory antitumour CD4+ T cells in melanoma. Nature, 2022, 605, 532-538.	27.8	70
101	Streamlined Protocol for Deep Proteomic Profiling of FAC-sorted Cells and Its Application to Freshly Isolated Murine Immune Cells*. Molecular and Cellular Proteomics, 2019, 18, 995a-1009.	3.8	69
102	A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations. Cell Systems, 2018, 6, 424-443.e7.	6.2	68
103	Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nature Medicine, 2018, 24, 1762-1772.	30.7	64
104	Simplified and Efficient Quantification of Low-abundance Proteins at Very High Multiplex via Targeted Mass Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 1137-1149.	3.8	63
105	GeNets: a unified web platform for network-based genomic analyses. Nature Methods, 2018, 15, 543-546.	19.0	62
106	Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. Nature Methods, 2018, 15, 371-378.	19.0	58
107	Building the Connectivity Map of epigenetics: Chromatin profiling by quantitative targeted mass spectrometry. Methods, 2015, 72, 57-64.	3.8	55
108	Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Research, 2018, 78, 2732-2746.	0.9	52

#	Article	IF	CITATIONS
109	STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell, 2021, 39, 827-844.e10.	16.8	49
110	Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nature Communications, 2021, 12, 4980.	12.8	47
111	Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nature Communications, 2021, 12, 2328.	12.8	45
112	Overview of Peptide and Protein Analysis by Mass Spectrometry. Current Protocols in Protein Science, 2010, 62, Unit16.1.	2.8	44
113	Automated Microchromatography Enables Multiplexing of Immunoaffinity Enrichment of Peptides to Greater than 150 for Targeted MS-Based Assays. Analytical Chemistry, 2016, 88, 7548-7555.	6.5	44
114	Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. Journal of Proteome Research, 2016, 15, 691-706.	3.7	44
115	A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Science Translational Medicine, 2019, 11, .	12.4	44
116	Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood, 2019, 134, 160-170.	1.4	41
117	Trio Haploinsufficiency Causes Neurodevelopmental Disease-Associated Deficits. Cell Reports, 2019, 26, 2805-2817.e9.	6.4	39
118	Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight, 2021, 6, .	5.0	39
119	Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. Nature Communications, 2021, 12, 4375.	12.8	39
120	Genomic Profiling of Lung Adenocarcinoma in Never-Smokers. Journal of Clinical Oncology, 2021, 39, 3747-3758.	1.6	38
121	A framework for installable external tools in Skyline. Bioinformatics, 2014, 30, 2521-2523.	4.1	36
122	New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins. Molecular and Cellular Proteomics, 2017, 16, 327-328.	3.8	33
123	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.9	33
124	BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Cancer Research, 2020, 80, 3841-3854.	0.9	32
125	Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples. Molecular and Cellular Proteomics, 2021, 20, 100133.	3.8	32
126	Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Scientific Reports, 2016, 6, 36298.	3.3	29

#	Article	IF	CITATIONS
127	CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress. Circulation Research, 2020, 127, 631-646.	4.5	29
128	Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Science Translational Medicine, 2021, 13, .	12.4	29
129	Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. Journal of Clinical Investigation, 2020, 130, 2097-2110.	8.2	29
130	An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Reports, 2017, 19, 2853-2866.	6.4	26
131	Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer. Nature Communications, 2021, 12, 734.	12.8	26
132	Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI Insight, 2021, 6, .	5.0	26
133	Cell-specific transcriptional control of mitochondrial metabolism by TIF1Î ³ drives erythropoiesis. Science, 2021, 372, 716-721.	12.6	25
134	New Techniques for Qligosaccharide Sequencing. Journal of Carbohydrate Chemistry, 1983, 2, 1-18.	1.1	24
135	Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular and Cellular Proteomics, 2021, 20, 100167.	3.8	23
136	Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 2388-2400.	3.8	22
137	Avant-garde: an automated data-driven DIA data curation tool. Nature Methods, 2020, 17, 1237-1244.	19.0	22
138	PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nature Communications, 2022, 13, 604.	12.8	22
139	Targeted MS Assay Predicting Tamoxifen Resistance in Estrogen-Receptor-Positive Breast Cancer Tissues and Sera. Journal of Proteome Research, 2016, 15, 1230-1242.	3.7	21
140	Avadomide Induces Degradation of ZMYM2 Fusion Oncoproteins in Hematologic Malignancies. Blood Cancer Discovery, 2021, 2, 250-265.	5.0	19
141	Evaluation of Advanced Precursor Determination for Tandem Mass Tag (TMT)-Based Quantitative Proteomics across Instrument Platforms. Journal of Proteome Research, 2019, 18, 542-547.	3.7	18
142	<i>BCOR</i> and <i>BCORL1</i> Mutations Drive Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target Genes. Blood Cancer Discovery, 2022, 3, 116-135.	5.0	18
143	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	5.0	17
144	An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens. ELife, 2021, 10,	6.0	17

#	Article	IF	CITATIONS
145	Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. Journal of Clinical Investigation, 2022, 132, .	8.2	17
146	A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. ELife, 2022, 11, .	6.0	15
147	SMAC mimetics promote NIK-dependent inhibition of CD4 ⁺ T _H 17 cell differentiation. Science Signaling, 2019, 12, .	3.6	14
148	Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood, 2022, 139, 2534-2546.	1.4	14
149	MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies. Molecular and Cellular Proteomics, 2021, 20, 100116.	3.8	13
150	Identification of RIOK2 as a master regulator of human blood cell development. Nature Immunology, 2022, 23, 109-121.	14.5	13
151	Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry. Methods in Molecular Biology, 2016, 1410, 135-167.	0.9	12
152	A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Molecular Systems Biology, 2021, 17, e10156.	7.2	12
153	Automating UbiFast for High-throughput and Multiplexed Ubiquitin Enrichment. Molecular and Cellular Proteomics, 2021, 20, 100154.	3.8	12
154	Blockade of IL-22 signaling reverses erythroid dysfunction in stress-induced anemias. Nature Immunology, 2021, 22, 520-529.	14.5	11
155	PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis. Nature Methods, 2021, 18, 580-582.	19.0	11
156	Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods, 2021, 1, 100015.	2.9	10
157	Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma. Journal of Clinical Investigation, 2022, 132, .	8.2	10
158	Identification of a Novel Regulator of Clostridioides difficile Cortex Formation. MSphere, 2021, 6, e0021121.	2.9	6
159	Multiomic characterization of oncogenic signaling mediated by wild-type and mutant RIT1. Science Signaling, 2021, 14, eabc4520.	3.6	6
160	Proteomics and Population Biology in the Cardiovascular Health Study (CHS): design of a study with mentored access and active data sharing. European Journal of Epidemiology, 2022, 37, 755-765.	5.7	6
161	Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells. Nature Chemical Biology, 2018, 14, 844-852.	8.0	5
162	Spontaneous Glycan Reattachment Following N-Glycanase Treatment of Influenza and HIV Vaccine Antigens. Journal of Proteome Research, 2020, 19, 733-743.	3.7	5

#	Article	IF	CITATIONS
163	From Skepticism to Embrace: The Role of Targeted Mass Spectrometry in Validating Proteomics. Clinical Chemistry, 2020, 66, 973-974.	3.2	5
164	The Conserved Translation Factor LepA Is Required for Optimal Synthesis of a Porin Family in Mycobacterium smegmatis. Journal of Bacteriology, 2021, 203, .	2.2	5
165	Virtual Issue: Technological Innovations. Molecular and Cellular Proteomics, 2020, 19, 572-573.	3.8	0