Philippe Darriet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Botrytized wines. , 2022, , 669-715.		1
2	Qualitative Screening of Volatile Thiols in Wine by Selective Silver Ion Solid-Phase Extraction with Heart-Cutting Multidimensional Gas Chromatography Mass Spectrometry/Olfactometry. Journal of Agricultural and Food Chemistry, 2022, 70, 4701-4711.	5.2	3
3	Aromatic maturity is a cornerstone of terroir expression in red wine. Oeno One, 2022, 56, 335-351.	1.4	3
4	Sensory-directed characterisation of distinctive aromas of Sauternes and Viognier wines through semi-preparative liquid chromatography and gas chromatography approaches. Journal of Chromatography A, 2021, 1637, 461803.	3.7	5
5	Influence of curettage on Esca-diseased <i>Vitis vinifera</i> L. cv. Sauvignon blanc plants on the quality of musts and wines. Oeno One, 2021, 55, 171-182.	1.4	3
6	Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Frontiers in Plant Science, 2021, 12, 643258.	3.6	81
7	Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. Frontiers in Plant Science, 2021, 12, 643024.	3.6	48
8	Sensorial Impact and Distribution of 3-Methyl-2,4-nonanedione in Cognacs and Spirits. Journal of Agricultural and Food Chemistry, 2021, 69, 4509-4517.	5.2	5
9	Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. International Journal of Molecular Sciences, 2021, 22, 7794.	4.1	21
10	Contribution of Grapes and Oak Wood Barrels to Pyrrole Contents in Chardonnay Wines: The Influence of Several Cooperage Parameters. Journal of Agricultural and Food Chemistry, 2021, 69, 8179-8189.	5.2	0
11	Strategies for the identification and sensory evaluation of volatile constituents in wine. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4549-4583.	11.7	13
12	Impact of Closure OTR on the Volatile Compound Composition and Oxidation Aroma Intensity of Sauvignon Blanc Wines during and after 10 Years of Bottle Storage. Journal of Agricultural and Food Chemistry, 2021, 69, 9883-9894.	5.2	5
13	Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food Chemistry, 2021, 360, 130120.	8.2	11
14	Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. Frontiers in Plant Science, 2021, 12, 717223.	3.6	15
15	Identification and analysis of new \hat{l}_{\pm} - and \hat{l}^2 -hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in musts and red wines. Food Chemistry, 2020, 305, 125486.	8.2	9
16	Aromatic Potential of Bordeaux Grape Cultivars: Identification and Assays on 4-Oxononanoic Acid, a Î ³ -Nonalactone Precursor. Journal of Agricultural and Food Chemistry, 2020, 68, 13344-13352.	5.2	8
17	Symposium Introduction: Recent Progress and Current Challenges in Wine Analytical Sciences. Journal of Agricultural and Food Chemistry, 2020, 68, 13291-13293.	5.2	1
18	Exploration of space to achieve scientific breakthroughs. Biotechnology Advances, 2020, 43, 107572.	11.7	21

#	Article	IF	CITATIONS
19	Contribution of Volatile Odorous Terpenoid Compounds to Aged Cognac Spirits Aroma in a Context of Multicomponent Odor Mixtures. Journal of Agricultural and Food Chemistry, 2020, 68, 13310-13318.	5.2	24
20	Sensory characterisation of Bordeaux red wines produced without added sulfites. Oeno One, 2020, 54, 733-743.	1.4	19
21	Recent advancements in understanding the terroir effect on aromas in grapes and wines. Oeno One, 2020, 54, .	1.4	23
22	Identification of Dialkylpyrazines Off-Flavors in Oak Wood. Journal of Agricultural and Food Chemistry, 2019, 67, 10137-10144.	5.2	7
23	Quantitation, Organoleptic Contribution, and Potential Origin of Diethyl Acetals Formed from Various Aldehydes in Cognac. Journal of Agricultural and Food Chemistry, 2019, 67, 2617-2625.	5.2	9
24	Consumer preferences for different red wine styles and repeated exposure effects. Food Quality and Preference, 2019, 73, 110-116.	4.6	29
25	The effects of a moderate grape temperature increase on berry secondary metabolites. Oeno One, 2019, 53, .	1.4	20
26	Volatile Compounds Related to †Stone Fruit' Aroma Attributes in Viognier and Chardonnay Wines. Journal of Agricultural and Food Chemistry, 2018, 66, 2838-2850.	5.2	43
27	Impact of Plasmopara viticola infection of Merlot and Cabernet Sauvignon grapes on wine composition and flavor. Food Chemistry, 2018, 239, 102-110.	8.2	30
28	Adaptation to climate change of the French wine industry: a systemic approach – Main outcomes of the project LACCAVE. E3S Web of Conferences, 2018, 50, 01020.	0.5	2
29	Molecular interpretation of dried-fruit aromas in Merlot and Cabernet Sauvignon musts and young wines: Impact of over-ripening. Food Chemistry, 2018, 266, 245-253.	8.2	28
30	Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc. Journal of the Science of Food and Agriculture, 2017, 97, 1267-1275.	3.5	8
31	1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins. Journal of Agricultural and Food Chemistry, 2017, 65, 383-393.	5.2	35
32	Toward a Molecular Understanding of the Typicality of Chardonnay Wines: Identification of Powerful Aromatic Compounds Reminiscent of Hazelnut. Journal of Agricultural and Food Chemistry, 2017, 65, 1058-1069.	5.2	20
33	Wine. , 2017, , 25-26.		4
34	Identification and Organoleptic Contribution of (<i>Z</i>)-1,5-Octadien-3-one to the Flavor of <i>Vitis vinifera</i> cv. Merlot and Cabernet Sauvignon Musts. Journal of Agricultural and Food Chemistry, 2017, 65, 1915-1923.	5.2	14
35	Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines. Food Chemistry, 2017, 232, 229-236.	8.2	34
36	Unexpected impact of 2-methylisoborneol as off-odour substance in aged wines. Food Chemistry, 2017, 220, 498-504.	8.2	7

#	Article	IF	CITATIONS
37	What is the expected impact of climate change on wine aroma compounds and their precursors in grape?. Oeno One, 2017, 51, 141.	1.4	8
38	What is the expected impact of climate change on wine aroma compounds and their precursors in grape?. Oeno One, 2017, 51, 141-146.	1.4	69
39	The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 2016, 11, 150-167.	0.8	345
40	Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biology, 2016, 16, 173.	3.6	26
41	Identification and analysis of piperitone in red wines. Food Chemistry, 2016, 206, 191-196.	8.2	20
42	Influence of Chirality of Lactones on the Perception of Some Typical Fruity Notes through Perceptual Interaction Phenomena in Bordeaux Dessert Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 8160-8167.	5.2	20
43	Perceived minerality in sauvignon blanc wine: Chemical reality or cultural construct?. Food Research International, 2016, 87, 168-179.	6.2	7
44	Identification of S-3-(hexanal)-glutathione and its bisulfite adduct in grape juice from Vitis vinifera L. cv. Sauvignon blanc as new potential precursors of 3SH. Food Chemistry, 2016, 199, 711-719.	8.2	33
45	Identification and Organoleptic Contribution of Vanillylthiol in Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 1318-1325.	5.2	14
46	Incidence of a vine protection using a commercial formula of Bordeaux mixture on the Sauvignon grapes maturity and the wines varietal aroma (results of a 3-year study). Oeno One, 2016, 30, 133.	1.4	2
47	Incidence of vine sprayings with downy mildew fungicides, without parasitic fungi, on Cabernet Sauvignon grapes and wines composition. Oeno One, 2016, 35, 23.	1.4	0
48	Evidence for Perceptual Interaction Phenomena To Interpret Typical Nuances of "Overripe―Fruity Aroma in Bordeaux Dessert Wines. ACS Symposium Series, 2015, , 87-101.	0.5	6
49	Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 8879-8889.	5.2	30
50	Vine Nitrogen Status Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in Grape Berries and Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 9789-9802.	5.2	18
51	Characterizing aromatic typicality of Riesling wines: merging volatile compositional and sensory aspects. Food Research International, 2015, 69, 26-37.	6.2	40
52	Glutathione Preservation during Winemaking with <i>Vitis Vinifera</i> White Varieties: Example of Sauvignon blanc Grapes. American Journal of Enology and Viticulture, 2015, 66, 187-194.	1.7	19
53	Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2015, 1415, 123-133.	3.7	19
54	New Insights into Intrinsic and Extrinsic Factors Triggering Premature Aging in White Wines. ACS Symposium Series, 2015, , 229-251.	0.5	6

#	Article	IF	CITATIONS
55	Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. Oeno One, 2015, 49, 253.	1.4	7
56	Identification of a New Lactone Contributing to Overripe Orange Aroma in Bordeaux Dessert Wines via Perceptual Interaction Phenomena. Journal of Agricultural and Food Chemistry, 2014, 62, 2469-2478.	5.2	35
57	Role of 3-Methyl-2,4-nonanedione in the Flavor of Aged Red Wines. Journal of Agricultural and Food Chemistry, 2013, 61, 7373-7380.	5.2	36
58	Genetic Analysis of the Biosynthesis of 2-Methoxy-3-Isobutylpyrazine, a Major Grape-Derived Aroma Compound Impacting Wine Quality Â. Plant Physiology, 2013, 162, 604-615.	4.8	89
59	Scalping of Light Volatile Sulfur Compounds by Wine Closures. Journal of Agricultural and Food Chemistry, 2012, 60, 10952-10956.	5.2	14
60	Identification of Adducts between an Odoriferous Volatile Thiol and Oxidized Grape Phenolic Compounds: Kinetic Study of Adduct Formation under Chemical and Enzymatic Oxidation Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 2647-2656.	5.2	52
61	The influence of packaging on wine conservation. Food Control, 2012, 23, 302-311.	5.5	60
62	Impact of the Oxygen Exposure during Bottling and Oxygen Barrier Properties of Different Closures on Wine Quality during Post-Bottling. ACS Symposium Series, 2012, , 167-187.	0.5	2
63	Identification of ethyl 2-hydroxy-4-methylpentanoate in red wines, a compound involved in blackberry aroma. Food Chemistry, 2012, 132, 230-236.	8.2	59
64	Identification of Impact Odorants Contributing to Fresh Mushroom Off-Flavor in Wines: Incidence of Their Reactivity with Nitrogen Compounds on the Decrease of the Olfactory Defect. Journal of Agricultural and Food Chemistry, 2011, 59, 3264-3272.	5.2	35
65	3-Sulfanylhexanol Precursor Biogenesis in Grapevine Cells: The Stimulating Effect of <i>Botrytis cinerea</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 1344-1351.	5.2	50
66	Identification of Ethyl 2-Sulfanylacetate as an Important Off-Odor Compound in White Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 10191-10199.	5.2	26
67	Development of hybrid elution systems for efficient purification of stilbenoids using centrifugal partition chromatography coupled to mass spectrometry. Journal of Chromatography A, 2011, 1218, 6079-6084.	3.7	21
68	Determination of 3-methyl-2,4-nonanedione in red wines using methanol chemical ionization ion trap mass spectrometry. Journal of Chromatography A, 2011, 1218, 7023-30.	3.7	13
69	Reactivity of volatile thiols with polyphenols in a wine-model medium: Impact of oxygen, iron, and sulfur dioxide. Analytica Chimica Acta, 2010, 660, 102-109.	5.4	109
70	Elucidation of the 1,3-Sulfanylalcohol Oxidation Mechanism: An Unusual Identification of the Disulfide of 3-Sulfanylhexanol in Sauternes Botrytized Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 10606-10613.	5.2	34
71	Identification of a Sotolon Pathway in Dry White Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 7273-7279.	5.2	61
72	Impact of noble rot on the aroma precursor of 3-sulfanylhexanol content in Vitis vinifera L. cv Sauvignon blanc and Semillon grape juice. Food Chemistry, 2009, 114, 1359-1364.	8.2	64

#	Article	IF	CITATIONS
73	Impact of Oxygen Dissolved at Bottling and Transmitted through Closures on the Composition and Sensory Properties of a Sauvignon Blanc Wine during Bottle Storage. Journal of Agricultural and Food Chemistry, 2009, 57, 10261-10270.	5.2	133
74	Volatile profile and differentiation between Albariño wines from different origins. International Journal of Food Science and Technology, 2008, 43, 464-475.	2.7	17
75	Distribution and Organoleptic Impact of Sotolon Enantiomers in Dry White Wines. Journal of Agricultural and Food Chemistry, 2008, 56, 1606-1610.	5.2	38
76	Identification of Volatile Compounds Responsible for Prune Aroma in Prematurely Aged Red Wines. Journal of Agricultural and Food Chemistry, 2008, 56, 5285-5290.	5.2	90
77	Changes in the Sotolon Content of Dry White Wines during Barrel and Bottle Aging. Journal of Agricultural and Food Chemistry, 2008, 56, 2688-2693.	5.2	59
78	Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chemistry, 2007, 103, 536-545.	8.2	108
79	Impact of the Botrytis cinerea strain and metabolism on (â^')-geosmin production by Penicillium expansum in grape juice. Antonie Van Leeuwenhoek, 2007, 92, 331-341.	1.7	34
80	Characterization of Some Mushroom and Earthy Off-Odors Microbially Induced by the Development of Rot on Grapes. Journal of Agricultural and Food Chemistry, 2006, 54, 9193-9200.	5.2	147
81	A CAPS test allowing a rapid distinction of Penicillium expansum among fungal species collected on grape berries, inferred from the sequence and secondary structure of the mitochondrial SSU-rRNA. International Journal of Food Microbiology, 2006, 111, 183-190.	4.7	7
82	Origin of (â^')-Geosmin on Grapes: On the Complementary Action of Two Fungi, Botrytis Cinerea and Penicillium Expansum. Antonie Van Leeuwenhoek, 2005, 88, 131-139.	1.7	76
83	Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathology, 2004, 53, 434-445.	2.4	109
84	Characterization of Penicillium Species Isolated from Grape Berries by Their Internal Transcribed Spacer (ITS1) Sequences and by Gas Chromatography?Mass Spectrometry Analysis of Geosmin Production. Current Microbiology, 2004, 48, 405-11.	2.2	43
85	Impact Odorants Contributing to the Fungus Type Aroma from Grape Berries Contaminated by Powdery Mildew (Uncinula necator); Incidence of Enzymatic Activities of the Yeast Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2002, 50, 3277-3282.	5.2	110
86	Stereodifferentiation of geosmin in wine. European Food Research and Technology, 2001, 213, 122-125.	3.3	36
87	Stereodifferentiation of 3-mercapto-2-methylpropanol in wine. European Food Research and Technology, 2000, 210, 349-352.	3.3	16
88	Identification and Quantification of Geosmin, an Earthy Odorant Contaminating Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 4835-4838.	5.2	89
89	A Powerful Aromatic Volatile Thiol, 2-Furanmethanethiol, Exhibiting Roast Coffee Aroma in Wines Made from SeveralVitisviniferaGrape Varieties. Journal of Agricultural and Food Chemistry, 2000, 48, 1799-1802.	5.2	146
90	Identification of Volatile and Powerful Odorous Thiols in Bordeaux Red Wine Varieties. Journal of Agricultural and Food Chemistry, 1998, 46, 3095-3099.	5.2	144

#	Article	IF	CITATIONS
91	Identification of a powerful aromatic component ofVitis vinifera L. var. sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour and Fragrance Journal, 1995, 10, 385-392.	2.6	281