## Makoto Kurachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842691/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 2015, 15, 486-499.                                                                                | 22.7 | 3,159     |
| 2  | Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354, 1160-1165.                                                       | 12.6 | 939       |
| 3  | The epigenetic landscape of T cell exhaustion. Science, 2016, 354, 1165-1169.                                                                                                        | 12.6 | 694       |
| 4  | Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1<br>Are an Early Driver of CD8 + T Cell Exhaustion. Immunity, 2016, 45, 358-373.  | 14.3 | 560       |
| 5  | Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying<br>Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity, 2020, 52, 825-841.e8. | 14.3 | 497       |
| 6  | TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8ÂT Cell-Fate Decision.<br>Immunity, 2019, 51, 840-855.e5.                                              | 14.3 | 409       |
| 7  | The transcription factor BATF operates as an essential differentiation checkpoint in early effector<br>CD8+ T cells. Nature Immunology, 2014, 15, 373-383.                           | 14.5 | 289       |
| 8  | CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. Journal of Experimental Medicine, 2019, 216, 2748-2762.                                           | 8.5  | 216       |
| 9  | Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 2016, 127, 1666-1675.                            | 1.4  | 207       |
| 10 | CD8+ T cell exhaustion. Seminars in Immunopathology, 2019, 41, 327-337.                                                                                                              | 6.1  | 169       |
| 11 | Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells. Immunity, 2018, 48, 243-257.e10.                                                        | 14.3 | 164       |
| 12 | InÂvivo CD8+ TÂcell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 2021, 184, 1262-1280.e22.                                                                | 28.9 | 107       |
| 13 | Long-Term Persistence of Exhausted CD8ÂT Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell<br>Reports, 2018, 23, 2142-2156.                                              | 6.4  | 84        |
| 14 | miR-150 Regulates Memory CD8ÂT Cell Differentiation via c-Myb. Cell Reports, 2017, 20, 2584-2597.                                                                                    | 6.4  | 70        |
| 15 | Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a<br>Long Non-coding RNA. Immunity, 2017, 47, 435-449.e8.                          | 14.3 | 57        |
| 16 | Inhibitory signaling sustains a distinct early memory CD8 <sup>+</sup> T cell precursor that is resistant to DNA damage. Science Immunology, 2021, 6, .                              | 11.9 | 52        |
| 17 | Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nature Protocols, 2017, 12, 1980-1998.                                                   | 12.0 | 47        |
| 18 | Hidden Caveat of Inducible Cre Recombinase. Immunity, 2019, 51, 591-592.                                                                                                             | 14.3 | 23        |

ΜΑΚΟΤΟ KURACHI

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Batf-mediated epigenetic control of effector CD8 <sup>+</sup> T cell differentiation. Science<br>Immunology, 2022, 7, eabi4919.                                                                                      | 11.9 | 19        |
| 20 | Trib1 regulates T cell differentiation during chronic infection by restraining the effector program.<br>Journal of Experimental Medicine, 2020, 217, .                                                               | 8.5  | 15        |
| 21 | Transient Depletion of CD4+ Cells Induces Remodeling of the TCR Repertoire in Gastrointestinal<br>Cancer. Cancer Immunology Research, 2021, 9, 624-636.                                                              | 3.4  | 13        |
| 22 | MCPIP1 reduces HBV-RNA by targeting its epsilon structure. Scientific Reports, 2020, 10, 20763.                                                                                                                      | 3.3  | 10        |
| 23 | Generation of tumor antigen-specific murine CD8+ T cells with enhanced anti-tumor activity via highly efficient CRISPR/Cas9 genome editing. International Immunology, 2018, 30, 141-154.                             | 4.0  | 9         |
| 24 | MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106083119. | 7.1  | 7         |
| 25 | Leukocyte cell-derived chemotaxin 2 is an antiviral regulator acting through the proto-oncogene<br>MET. Nature Communications, 2022, 13, .                                                                           | 12.8 | 6         |