List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584255/publications.pdf Version: 2024-02-01

		23567	19190
138	14,597	58	118
papers	citations	h-index	g-index
143	143	143	9073
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sorption of Perfluorinated Surfactants on Sediments. Environmental Science & Technology, 2006, 40, 7251-7256.	10.0	1,095
2	A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environmental Science & Technology, 2017, 51, 2508-2518.	10.0	971
3	Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environmental Science and Technology Letters, 2016, 3, 344-350.	8.7	839
4	Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011, 83, 9361-9369.	6.5	609
5	Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil. Environmental Science & Technology, 2013, 47, 8187-8195.	10.0	582
6	Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environmental Science & Technology, 2017, 51, 2047-2057.	10.0	554
7	Quantitative Determination of Perfluorochemicals in Sediments and Domestic Sludge. Environmental Science & Technology, 2005, 39, 3946-3956.	10.0	494
8	Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility. Environmental Science & Technology, 2006, 40, 7350-7357.	10.0	359
9	Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 2014, 51, 246-255.	11.3	351
10	Occurrence and Fate of Perfluorochemicals in Soil Following the Land Application of Municipal Biosolids. Environmental Science & amp; Technology, 2011, 45, 8106-8112.	10.0	291
11	Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites. Environmental Science & Technology, 2013, 47, 4164-4171.	10.0	291
12	Detecting nanoparticulate silver using singleâ€particle inductively coupled plasma–mass spectrometry. Environmental Toxicology and Chemistry, 2012, 31, 115-121.	4.3	277
13	Solubility of nanoâ€zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry, 2012, 31, 93-99.	4.3	246
14	Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Environmental Science & Technology, 2017, 51, 6342-6351.	10.0	239
15	Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). Journal of Analytical Atomic Spectrometry, 2012, 27, 1131.	3.0	235
16	Perfluoroalkyl Acid Distribution in Various Plant Compartments of Edible Crops Grown in Biosolids-Amended soils. Environmental Science & Technology, 2014, 48, 7858-7865.	10.0	218
17	Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science & Technology, 2013, 47, 14062-14069.	10.0	213
18	Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. Journal of Hazardous Materials. 2013. 260. 740-746.	12.4	199

#	Article	IF	CITATIONS
19	Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area. Environmental Science & Technology, 2014, 48, 6644-6652.	10.0	199
20	The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2015, 123, A107-11.	6.0	199
21	Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Environmental Science & Technology, 2013, 47, 14315-14323.	10.0	193
22	Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environmental Science & Technology, 2012, 46, 12272-12280.	10.0	186
23	Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). Journal of Hazardous Materials, 2015, 295, 170-175.	12.4	174
24	Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology, 2020, 54, 15883-15892.	10.0	171
25	Perfluoroalkyl Acid Uptake in Lettuce (<i>Lactuca sativa</i>) and Strawberry (<i>Fragaria) Tj ETQq1 1 0.784314 14361-14368.</i>	rgBT /Over 10.0	lock 10 Tf 50 162
26	Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal, 2017, 317, 424-432.	12.7	157
27	Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Research, 2012, 46, 1958-1968.	11.3	143
28	Engineered Infiltration Systems for Urban Stormwater Reclamation. Environmental Engineering Science, 2013, 30, 437-454.	1.6	137
29	Enhanced Extraction of AFFF-Associated PFASs from Source Zone Soils. Environmental Science & Technology, 2020, 54, 4952-4962.	10.0	127
30	Bioaccumulation of Perfluorochemicals in Sediments by the Aquatic Oligochaete Lumbriculus variegatus. Environmental Science & amp; Technology, 2007, 41, 4600-4606.	10.0	123
31	Modeling Sorption of Anionic Surfactants onto Sediment Materials:Â An a priori Approach for Perfluoroalkyl Surfactants and Linear Alkylbenzene Sulfonates. Environmental Science & Technology, 2007, 41, 3254-3261.	10.0	118
32	Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013, 7, 10681-10694.	14.6	117
33	Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27, 1532.	3.0	111
34	Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology, 2012, 91, 46-51.	7.9	105
35	Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Environmental Science & Technology, 2021, 55, 313-323.	10.0	104
36	Experimental Setup for a Large-Scale Bridge Superstructure Model Subjected to Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2011, 137, 3-11.	1.2	101

#	Article	IF	CITATIONS
37	Rapid Destruction and Defluorination of Perfluorooctanesulfonate by Alkaline Hydrothermal Reaction. Environmental Science and Technology Letters, 2019, 6, 630-636.	8.7	101
38	Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1093.	3.0	95
39	Biochar and Activated Carbon for Enhanced Trace Organic Contaminant Retention in Stormwater Infiltration Systems. Environmental Science & Technology, 2015, 49, 6222-6230.	10.0	95
40	Trace organic contaminants in urban runoff: Associations with urban land-use. Environmental Pollution, 2018, 242, 2068-2077.	7.5	95
41	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	6.0	91
42	Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science & Technology, 2020, 54, 6957-6967.	10.0	88
43	The sequestration of PCBs in Lake Hartwell sediment with activated carbon. Water Research, 2005, 39, 2105-2113.	11.3	85
44	Removal of per- and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration. Journal of Hazardous Materials, 2019, 366, 160-168.	12.4	83
45	Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: A critical review. Water Research, 2021, 200, 117244.	11.3	83
46	Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. Environmental Science & Technology, 2021, 55, 3283-3295.	10.0	77
47	Measuring total PFASs in water: The tradeoff between selectivity and inclusivity. Current Opinion in Environmental Science and Health, 2019, 7, 13-18.	4.1	76
48	Bioaccumulation of Perfluoroalkyl Acids by Earthworms (<i>Eisenia fetida</i>) Exposed to Contaminated Soils. Environmental Science & Technology, 2015, 49, 881-888.	10.0	72
49	Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environmental Science & Technology, 2020, 54, 15768-15777.	10.0	71
50	Unsaturated PFOS and Other PFASs in Human Serum and Drinking Water from an AFFF-Impacted Community. Environmental Science & amp; Technology, 2021, 55, 8139-8148.	10.0	71
51	Persistence of triclocarban and triclosan in soils after land application of biosolids and bioaccumulation in <i>Eisenia foetida</i> . Environmental Toxicology and Chemistry, 2011, 30, 556-563.	4.3	69
52	Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of the Total Environment, 2018, 619-620, 654-664.	8.0	69
53	Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Science of the Total Environment, 2021, 771, 145427.	8.0	69
54	Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams. Environmental Science & Technology, 2018, 52, 10689-10697.	10.0	66

#	Article	IF	CITATIONS
55	Reductive Defluorination of Branched Per- and Polyfluoroalkyl Substances with Cobalt Complex Catalysts. Environmental Science and Technology Letters, 2018, 5, 289-294.	8.7	65
56	Effects of Chemical Oxidants on Perfluoroalkyl Acid Transport in One-Dimensional Porous Media Columns. Environmental Science & Technology, 2015, 49, 1681-1689.	10.0	64
57	Variability of trace organic chemical concentrations in raw wastewater at three distinct sewershed scales. Water Research, 2012, 46, 3261-3271.	11.3	61
58	Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environmental Science and Technology Letters, 2022, 9, 473-481.	8.7	61
59	BIOACCUMULATION OF TRICLOCARBAN IN LUMBRICULUS VARIEGATUS. Environmental Toxicology and Chemistry, 2009, 28, 2580.	4.3	60
60	The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport. Water Research, 2016, 92, 199-207.	11.3	59
61	Suspect Screening of Hydrocarbon Surfactants in AFFFs and AFFF-Contaminated Groundwater by High-Resolution Mass Spectrometry. Environmental Science & Technology, 2019, 53, 8068-8077.	10.0	59
62	Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. Journal of Cleaner Production, 2015, 91, 118-127.	9.3	58
63	Accumulation of contaminants of emerging concern in food crops—part 1: Edible strawberries and lettuce grown in reclaimed water. Environmental Toxicology and Chemistry, 2015, 34, 2213-2221.	4.3	57
64	Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. Environmental Science & Technology, 2020, 54, 15202-15214.	10.0	57
65	Detection of single walled carbon nanotubes by monitoring embedded metals. Environmental Sciences: Processes and Impacts, 2013, 15, 204-213.	3.5	55
66	Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using <i>Lumbriculus variegatus</i> . Environmental Toxicology and Chemistry, 2013, 32, 2069-2077.	4.3	54
67	Organic Carbon Amendments for Enhanced Biological Attenuation of Trace Organic Contaminants in Biochar-Amended Stormwater Biofilters. Environmental Science & Technology, 2017, 51, 9184-9193.	10.0	54
68	Emerging analytical methods for the characterization and quantification of organic contaminants in flowback and produced water. Trends in Environmental Analytical Chemistry, 2017, 15, 12-23.	10.3	54
69	Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science & Technology, 2021, 55, 5001-5011.	10.0	54
70	Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water. International Journal of Hygiene and Environmental Health, 2020, 223, 256-266.	4.3	53
71	Subsurface transport potential of perfluoroalkyl acids (PFAAs): Column experiments and modeling. Journal of Contaminant Hydrology, 2020, 233, 103661.	3.3	53
72	Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environmental Science: Water Research and Technology, 2017, 3, 726-734.	2.4	52

#	Article	IF	CITATIONS
73	Accumulation of contaminants of emerging concern in food crops—part 2: Plant distribution. Environmental Toxicology and Chemistry, 2015, 34, 2222-2230.	4.3	48
74	Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea. Environmental Pollution, 2021, 280, 116935.	7.5	45
75	Bioaccumulation of Novel Per- and Polyfluoroalkyl Substances in Mice Dosed with an Aqueous Film-Forming Foam. Environmental Science & Technology, 2020, 54, 5700-5709.	10.0	44
76	Enhanced Biofilm Production by a Toluene-Degrading <i>Rhodococcus</i> Observed after Exposure to Perfluoroalkyl Acids. Environmental Science & Technology, 2015, 49, 5458-5466.	10.0	43
77	Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing <i>Dehalococcoides</i> . Environmental Science & Technology, 2016, 50, 240-248.	10.0	42
78	Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. Environmental Science & Technology, 2018, 52, 13972-13985.	10.0	41
79	Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. Environmental Science & Technology, 2021, 55, 14617-14627.	10.0	41
80	Removal of trace organic chemicals in onsite wastewater soil treatment units: A laboratory experiment. Water Research, 2012, 46, 5174-5184.	11.3	40
81	Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology, 2021, 55, 7237-7245.	10.0	40
82	Biochar-augmented biofilters to improve pollutant removal from stormwater – can they improve receiving water quality?. Environmental Science: Water Research and Technology, 2020, 6, 1520-1537.	2.4	37
83	PFAS Analysis with Ultrahigh Resolution 21T FT-ICR MS: Suspect and Nontargeted Screening with Unrivaled Mass Resolving Power and Accuracy. Environmental Science & Technology, 2022, 56, 2455-2465.	10.0	34
84	Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Water Research, 2021, 205, 117677.	11.3	33
85	Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. Science of the Total Environment, 2020, 719, 137236.	8.0	32
86	Structure Database and <i>In Silico</i> Spectral Library for Comprehensive Suspect Screening of Per- and Polyfluoroalkyl Substances (PFASs) in Environmental Media by High-resolution Mass Spectrometry. Analytical Chemistry, 2021, 93, 2820-2827.	6.5	31
87	Measurement of Aqueous Diffusivities for Perfluoroalkyl Acids. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	30
88	Desorption of Poly- and Perfluoroalkyl Substances from Soil Historically Impacted with Aqueous Film-Forming Foam. Journal of Environmental Engineering, ASCE, 2021, 147, .	1.4	30
89	Benzotriazole (BT) and BT plant metabolites in crops irrigated with recycled water. Environmental Science: Water Research and Technology, 2017, 3, 213-223.	2.4	29
90	Potential for Beneficial Reuse of Oil and Gas–Derived Produced Water in Agriculture: Physiological and Morphological Responses in Spring Wheat (<i>Triticum aestivum</i>). Environmental Toxicology and Chemistry, 2019, 38, 1756-1769.	4.3	29

#	Article	IF	CITATIONS
91	Reductive defluorination of Perfluorooctanesulfonic acid (PFOS) by hydrated electrons generated upon UV irradiation of 3-Indole-acetic-acid in 12-Aminolauric-Modified montmorillonite. Water Research, 2021, 200, 117221.	11.3	29
92	Application of Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Contaminated Groundwater and Soil. Environmental Science & Technology, 2022, 56, 6647-6657.	10.0	29
93	Human development is linked to multiple water body impairments along the California coast. Estuaries and Coasts, 2006, 29, 860-870.	2.2	27
94	Electrochemical treatment of poly- and perfluoroalkyl substances in brines. Environmental Science: Water Research and Technology, 2020, 6, 2704-2712.	2.4	26
95	A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area. Journal of Contaminant Hydrology, 2022, 248, 104001.	3.3	26
96	Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice. Toxicological Sciences, 2017, , kfw251.	3.1	24
97	Food Crop Irrigation with Oilfield-Produced Water Suppresses Plant Immune Response. Environmental Science and Technology Letters, 2019, 6, 656-661.	8.7	24
98	Characterization of relevant site-specific PFAS fate and transport processes at multiple AFFF sites. Environmental Advances, 2022, 7, 100167.	4.8	24
99	Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology, 2022, 56, 368-378.	10.0	24
100	Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere, 2017, 184, 687-693.	8.2	22
101	Performance of Engineered Streambeds for Inducing Hyporheic Transient Storage and Attenuation of Resazurin. Environmental Science & amp; Technology, 2018, 52, 10627-10636.	10.0	22
102	Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea: a baseline study. Environmental Science and Pollution Research, 2021, 28, 2791-2803.	5.3	22
103	Granular activated carbon adsorption of perfluoroalkyl acids from ground and surface water. AWWA Water Science, 2022, 4, .	2.1	22
104	Polyfluorinated substances in abiotic standard reference materials. Analytical and Bioanalytical Chemistry, 2015, 407, 2975-2983.	3.7	21
105	Trace organic contaminant (TOrC) mixtures in Minnesota littoral zones: Effects of on-site wastewater treatment system (OWTS) proximity and biological impact. Science of the Total Environment, 2018, 626, 1157-1166.	8.0	21
106	Correction to "A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?― Environmental Science & Technology, 2018, 52, 3325-3325.	10.0	20
107	Immunotoxicity of an Electrochemically Fluorinated Aqueous Film-Forming Foam. Toxicological Sciences, 2020, 178, 104-114.	3.1	20
108	Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Science of the Total Environment, 2022, 824, 153711.	8.0	20

#	Article	IF	CITATIONS
109	Assessing Continued Electrochemical Treatment of Groundwater Impacted by Aqueous Film-Forming Foams. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	18
110	Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. Environment International, 2021, 152, 106487.	10.0	18
111	Life cycle environmental impacts of regeneration options for anion exchange resin remediation of PFAS impacted water. Water Research, 2021, 207, 117798.	11.3	18
112	Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. Science of the Total Environment, 2021, 788, 147721.	8.0	17
113	Fatigue of Diagonally Cracked RC Girders Repaired with CFRP. Journal of Bridge Engineering, 2008, 13, 24-33.	2.9	15
114	Sorption of Emerging Organic Wastewater Contaminants to Four Soils. Water (Switzerland), 2014, 6, 1028-1042.	2.7	15
115	Themed issues on per- and polyfluoroalkyl substances. Environmental Sciences: Processes and Impacts, 2019, 21, 1797-1802.	3.5	13
116	Effect of produced water treatment technologies on irrigation-induced metal and salt accumulation in wheat (Triticum aestivum) and sunflower (Helianthus annuus). Science of the Total Environment, 2020, 740, 140003.	8.0	13
117	Simulation of a hydraulic fracturing wastewater surface spill on agricultural soil. Science of the Total Environment, 2018, 645, 229-234.	8.0	12
118	Estimation of Transport Parameters of Perfluoroalkyl Acids (PFAAs) in Unsaturated Porous Media: Critical Experimental and Modeling Improvements. Environmental Science & Technology, 2022, 56, 7963-7975.	10.0	12
119	Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology, 2022, 56, 10030-10041.	10.0	12
120	Our Stainfree Future? A Virtual Issue on Poly- and Perfluoroalkyl Substances. Environmental Science & Technology, 2017, 51, 5859-5860.	10.0	11
121	Diffusion of perfluoroalkyl acids through clay-rich soil. Journal of Contaminant Hydrology, 2021, 241, 103814.	3.3	10
122	Cross-sectional associations between serum PFASs and inflammatory biomarkers in a population exposed to AFFF-contaminated drinking water. International Journal of Hygiene and Environmental Health, 2022, 240, 113905.	4.3	10
123	Desorption Isotherms for Poly- and Perfluoroalkyl Substances in Soil Collected from an Aqueous Film-Forming Foam Source Area. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	9
124	Simulating Impacts of Biosparging on Release and Transformation of Poly- and Perfluorinated Alkyl Substances from Aqueous Film-Forming Foam-Impacted Soil. Environmental Science & Technology, 2021, 55, 15744-15753.	10.0	9
125	Co-Design of Engineered Hyporheic Zones to Improve In-Stream Stormwater Treatment and Facilitate Regulatory Approval. Water (Switzerland), 2019, 11, 2543.	2.7	8
126	Patterns in Serum Toxicokinetics in <i>Peromyscus</i> Exposed to Per―and Polyfluoroalkyl Substances. Environmental Toxicology and Chemistry, 2021, 40, 2886-2898.	4.3	7

#	Article	IF	CITATIONS
127	Comment on "Fluorotechnology Is Critical to Modern Life: The FluoroCouncil Counterpoint to the Madrid Statementâ€: Environmental Health Perspectives, 2015, 123, A170.	6.0	6
128	An integrated statistical and deterministic hydrologic model for analyzing trace organic contaminants in commercial and high-density residential stormwater runoff. Science of the Total Environment, 2019, 673, 656-667.	8.0	6
129	The Mass Transfer Index (MTI): A semi-empirical approach for quantifying transport of solutes in variably saturated porous media. Journal of Contaminant Hydrology, 2021, 242, 103842.	3.3	6
130	Aerobic BTEX biodegradation increases yield of perfluoroalkyl carboxylic acids from biotransformation of a polyfluoroalkyl surfactant, 6:2 FtTAoS. Environmental Sciences: Processes and Impacts, 2022, 24, 439-446.	3.5	6
131	Metabolomics reveals primary response of wheat (Triticum aestivum) to irrigation with oilfield produced water. Environmental Research, 2022, 212, 113547.	7.5	6
132	LRFD Orthotropic Plate Model for Live Load Moment in Filled Grid Decks. Journal of Bridge Engineering, 2003, 8, 20-28.	2.9	5
133	The regenerative role of biofilm in the removal of pesticides from stormwater in biochar-amended biofilters. Environmental Science: Water Research and Technology, 2022, 8, 1092-1110.	2.4	5
134	Prioritizing potential endocrine active high resolution mass spectrometry (HRMS) features in Minnesota lakewater. Science of the Total Environment, 2019, 670, 814-825.	8.0	4
135	Themed issues on per- and polyfluoroalkyl substances. Environmental Science: Water Research and Technology, 2019, 5, 1808-1813.	2.4	4
136	Linking Trace Organic Chemical Attenuation to Microbiome Metabolic Capabilities: Insights from Laboratory- and Full-Scale Managed Aquifer Recharge Systems. ACS Symposium Series, 2016, , 163-187.	0.5	3
137	Orthotropic Plate Model for Estimating Deflections in Filled Grid Decks. Journal of Bridge Engineering, 2004, 9, 599-605.	2.9	2
138	Linking Trace Organic Contaminants in On‣ite Wastewaterâ€Treatment Discharge with Biological Effects. Environmental Toxicology and Chemistry, 2021, 40, 3193-3204.	4.3	1