Kazunori Murase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842517/publications.pdf

Version: 2024-02-01

840776 610901 27 656 11 24 citations h-index g-index papers 27 27 27 1003 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins, 2022, 14, 78.	3.4	7
2	Global population structure of the Serratia marcescens complex and identification of hospital-adapted lineages in the complex. Microbial Genomics, 2022, 8, .	2.0	8
3	Intracellular Group A <i>Streptococcus</i> Induces Golgi Fragmentation To Impair Host Defenses through Streptolysin O and NAD-Glycohydrolase. MBio, 2021, 12, .	4.1	12
4	Biological Effect of Streptococcus pyogenes-Released Extracellular Vesicles on Human Monocytic Cells, Induction of Cytotoxicity, and Inflammatory Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711144.	3.9	8
5	Single-chain variable fragment (scFv) targeting streptolysin O controls group A Streptococcus infection. Biochemical and Biophysical Research Communications, 2021, 566, 177-183.	2.1	O
6	The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19. Microbial Genomics, 2021, 7, .	2.0	9
7	Complete Genome Sequences of Two Streptococcus suis Strains Isolated from Asymptomatic Pigs. Microbiology Resource Announcements, 2020, 9, .	0.6	O
8	Complete Genome Sequences of Streptococcus pyogenes Serotype M3, M28, and M89 Strains Isolated from Human Patients in Japan, 1994 to 2009. Microbiology Resource Announcements, 2020, 9, .	0.6	1
9	TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy. Nature Communications, 2020, 11, 770.	12.8	39
10	Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microbial Genomics, 2020, 6, .	2.0	28
11	Reduced Genome of the Gut Symbiotic Bacterium "Candidatus Benitsuchiphilus tojoi―Provides Insight Into Its Possible Roles in Ecology and Adaptation of the Host Insect. Frontiers in Microbiology, 2020, 11, 840.	3.5	7
12	Sequential Changes in the Host Gut Microbiota During Infection With the Intestinal Parasitic Nematode Strongyloides venezuelensis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 217.	3.9	31
13	Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Scientific Reports, 2019, 9, 15789.	3.3	37
14	Phylogenetic relationship of prophages is affected by CRISPR selection in Group A Streptococcus. BMC Microbiology, 2019, 19, 24.	3.3	12
15	Characterization of pig saliva as the major natural habitat of Streptococcus suis by analyzing oral, fecal, vaginal, and environmental microbiota. PLoS ONE, 2019, 14, e0215983.	2.5	29
16	Complete Genome Sequences of Streptococcus pneumoniae Strains HU-OH (Serotype 3, Sequence Type) Tj ETQq Announcements, 2019, 8, .		/Overlock 1 3
17	Complete Genome Sequences of Eight Methicillin-Resistant Staphylococcus aureus Strains Isolated from Patients in Japan. Microbiology Resource Announcements, 2019, 8, .	0.6	9
18	Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles, 2018, 22, 537-552.	2.3	19

#	Article	IF	CITATIONS
19	Evaluation of magnetic cellulose bead-based DNA extraction from faecal materials for high-throughput bacterial community analyses. Applied Entomology and Zoology, 2018, 53, 281-286.	1.2	5
20	Complete Genome Sequence of Streptococcus agalactiae Serotype III, Multilocus Sequence Type 335 Strain HU-GS5823, Isolated from a Human Patient in Japan with Severe Invasive Infection. Microbiology Resource Announcements, 2018, 7, .	0.6	2
21	Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nature Communications, 2018, 9, 3216.	12.8	102
22	Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam. Infection, Genetics and Evolution, 2017, 54, 146-151.	2.3	7
23	DNA-based culture-independent analysis detects the presence of group a streptococcus in throat samples from healthy adults in Japan. BMC Microbiology, 2016, 16, 237.	3.3	2
24	Distinct interacting core taxa in co-occurrence networks enable discrimination of polymicrobial oral diseases with similar symptoms. Scientific Reports, 2016, 6, 30997.	3.3	70
25	The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Scientific Reports, 2015, 5, 16663.	3.3	112
26	Defining the genome features of <i>Escherichia albertii </i> , an emerging enteropathogen closely related to <i>Escherichia coli </i> . Genome Biology and Evolution, 2015, 7, evv211.	2.5	83
27	Haemolysin E- and enterohaemolysin-derived haemolytic activity of O55/O157 strains and other Escherichia coli lineages. Microbiology (United Kingdom), 2012, 158, 746-758.	1.8	14