Thomas Henle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney International, 2003, 63, 1934-1943.	5.2	1,379
2	Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (<i>Leptospermum scoparium) </i> honeys from New Zealand. Molecular Nutrition and Food Research, 2008, 52, 483-489.	3.3	522
3	Baking, Ageing, Diabetes: A Short History of the Maillard Reaction. Angewandte Chemie - International Edition, 2014, 53, 10316-10329.	13.8	352
4	1,2-Dicarbonyl Compounds in Commonly Consumed Foods. Journal of Agricultural and Food Chemistry, 2012, 60, 7071-7079.	5.2	288
5	Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids, 2005, 29, 313-322.	2.7	229
6	Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. Journal of Functional Foods, 2012, 4, 450-458.	3.4	192
7	Simultaneous determination of amino acids and biogenic amines by reversed-phase high-performance liquid chromatography of the dabsyl derivatives. Journal of Chromatography A, 1995, 715, 67-79.	3.7	191
8	TRANSGLUTAMINASE IN DAIRY PRODUCTS: CHEMISTRY, PHYSICS, APPLICATIONS. Journal of Texture Studies, 2006, 37, 113-155.	2.5	167
9	AGEs in foods: Do they play a role in uremia?. Kidney International, 2003, 63, S145-S147.	5.2	160
10	Glucose degradation products in PD fluids: Do they disappear from the peritoneal cavity and enter the systemic circulation?. Kidney International, 2003, 63, 298-305.	5.2	155
11	Studies on Absorption and Elimination of Dietary Maillard Reaction Products. Annals of the New York Academy of Sciences, 2005, 1043, 474-481.	3.8	146
12	Transport of Free and Peptideâ€Bound Glycated Amino Acids: Synthesis, Transepithelial Flux at Cacoâ€2 Cell Monolayers, and Interaction with Apical Membrane Transport Proteins. ChemBioChem, 2011, 12, 1270-1279.	2.6	142
13	Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. European Food Research and Technology, 2003, 216, 277-283.	3.3	128
14	Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds. Nephrology Dialysis Transplantation, 1999, 14, 1968-1975.	0.7	118
15	Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II. Journal of Allergy and Clinical Immunology, 2010, 125, 175-183.e11.	2.9	117
16	Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactuloselysine. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1991, 193, 119-122.	0.6	109
17	Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Archives of Toxicology, 2020, 94, 1375-1415.	4.2	109
18	Glycation products in infant formulas: chemical, analytical and physiological aspects. Amino Acids, 2012, 42, 1111-1118	2.7	106

2

#	Article	IF	CITATIONS
19	Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing. Food Hydrocolloids, 2009, 23, 1947-1957.	10.7	103
20	Detection and identification of a protein-bound imidazolone resulting from the reaction of arginine residues and methylglyoxal. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 55-58.	0.6	99
21	3-Deoxygalactosone, a "New―1,2-Dicarbonyl Compound in Milk Products. Journal of Agricultural and Food Chemistry, 2010, 58, 10752-10760.	5.2	99
22	Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2015, 63, 6723-6730.	5.2	98
23	Protein Isolates from Bambara Groundnut (<i>Voandzeia Subterranean</i> L.): Chemical Characterization and Functional Properties. International Journal of Food Properties, 2011, 14, 758-775.	3.0	97
24	Studies on the occurrence and formation of 1,2-dicarbonyls in honey. European Food Research and Technology, 2004, 218, 147-151.	3.3	91
25	The Macrocyclic Peptide Antibiotic Micrococcin P 1 Is Secreted by the Food-Borne Bacterium Staphylococcus equorum WS 2733 and Inhibits Listeria monocytogenes on Soft Cheese. Applied and Environmental Microbiology, 2000, 66, 2378-2384.	3.1	85
26	Food-derived 1,2-dicarbonyl compounds and their role in diseases. Seminars in Cancer Biology, 2018, 49, 1-8.	9.6	82
27	Efficient determination of individual maillard compounds in heat-treated milk products by amino acid analysis. International Dairy Journal, 1991, 1, 125-135.	3.0	81
28	Metabolic Transit of Dietary Methylglyoxal. Journal of Agricultural and Food Chemistry, 2013, 61, 10253-10260.	5.2	79
29	N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids, 2014, 46, 289-299.	2.7	79
30	Antioxidant properties of polar and nonâ€polar extracts of some tropical green leafy vegetables. Journal of the Science of Food and Agriculture, 2008, 88, 2486-2492.	3.5	78
31	Rheological properties of acid gels prepared from pressure- and transglutaminase-treated skim milk. Food Hydrocolloids, 2005, 19, 879-887.	10.7	77
32	Fast and sensitive determination of furosine. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1995, 200, 235-237.	0.6	75
33	Dietary advanced glycation end products – a risk to human health? A call for an interdisciplinary debate. Molecular Nutrition and Food Research, 2007, 51, 1075-1078.	3.3	75
34	Advanced glycation end products, physico-chemical and sensory characteristics of cooked lamb loins affected by cooking method and addition of flavour precursors. Food Chemistry, 2015, 168, 487-495.	8.2	74
35	Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. British Journal of Nutrition, 2006, 95, 1221-1228.	2.3	73
36	Transport of Free and Peptide-Bound Pyrraline at Intestinal and Renal Epithelial Cells. Journal of Agricultural and Food Chemistry, 2009, 57, 6474-6480.	5.2	73

#	Article	IF	CITATIONS
37	Ovalbumin Modified with Pyrraline, a Maillard Reaction Product, shows Enhanced T-cell Immunogenicity. Journal of Biological Chemistry, 2014, 289, 7919-7928.	3.4	68
38	Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Food Chemistry, 2018, 250, 162-169.	8.2	68
39	Formation of Maillard Reaction Products during Heat Treatment of Carrots. Journal of Agricultural and Food Chemistry, 2011, 59, 7992-7998.	5.2	65
40	Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types. Journal of Agricultural and Food Chemistry, 2016, 64, 7234-7243.	5.2	64
41	Chemical modification of muscle protein in diabetes. Archives of Biochemistry and Biophysics, 2004, 425, 200-206.	3.0	60
42	Synthesis of pyrraline reference material. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 72-74.	0.6	59
43	Advanced glycation end products in uremia. Advances in Chronic Kidney Disease, 2003, 10, 321-331.	2.1	57
44	Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. Food Chemistry, 2017, 224, 19-25.	8.2	55
45	In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney International, 2004, 66, 1873-1880.	5.2	53
46	Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum) Tj ETQq0 0 0 rgB	Г /Qverloc 2.3	k 10 Tf 50 38
47	Cross-Linking of Type I Collagen with Microbial Transglutaminase: Identification of Cross-Linking Sites. Biomacromolecules, 2010, 11, 698-705.	5.4	51
48	Metabolization of the Advanced Glycation End Product <i>N</i> -ε-Carboxymethyllysine (CML) by Different Probiotic <i>E. coli</i> Strains. Journal of Agricultural and Food Chemistry, 2019, 67, 1963-1972.	5.2	50
49	Transport of the Advanced Glycation End Products Alanylpyrraline and Pyrralylalanine by the Human Proton-Coupled Peptide Transporter hPEPT1. Journal of Agricultural and Food Chemistry, 2010, 58, 2543-2547.	5.2	49
50	Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid-hydrolysed cassava starch. Carbohydrate Polymers, 2006, 66, 494-499.	10.2	47
51	Glycation Reactions of Casein Micelles. Journal of Agricultural and Food Chemistry, 2016, 64, 2953-2961.	5.2	46
52	Identification and Quantification of Inhibitors for Angiotensin-Converting Enzyme in Hypoallergenic Infant Milk Formulas. Journal of Agricultural and Food Chemistry, 2008, 56, 6333-6338.	5.2	42
53	Free Maillard Reaction Products in Milk Reflect Nutritional Intake of Glycated Proteins and Can Be Used to Distinguish "Organic―and "Conventionally―Produced Milk. Journal of Agricultural and Food Chemistry, 2016, 64, 5071-5078.	5.2	41
54	Detection and identification of the cross-linking amino acidsN ?-andN ?-(2?-amino-2?-carboxy-ethyl)-l-histidine (?histidinoalanine?, HAL) in heated milk products. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 114-117.	0.6	40

#	Article	IF	CITATIONS
55	Quantification of the Maillard reaction product 6-(2-formyl-1-pyrrolyl)-l-norleucine (formyline) in food. European Food Research and Technology, 2012, 235, 99-106.	3.3	40
56	Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking Microbiota to Metabolic Inflammation. Nutrients, 2020, 12, 2497.	4.1	40
57	Metal Complexation by the Peptide-Bound Maillard Reaction ProductsNε-Fructoselysine andNε-Carboxymethyllysine. Journal of Agricultural and Food Chemistry, 2004, 52, 2347-2350.	5.2	38
58	Structural Changes of Microbial Transglutaminase during Thermal and High-Pressure Treatment. Journal of Agricultural and Food Chemistry, 2006, 54, 1716-1721.	5.2	38
59	Glycation compounds in peanuts. European Food Research and Technology, 2012, 234, 423-429.	3.3	38
60	Creatine Is a Scavenger for Methylglyoxal under Physiological Conditions via Formation of <i>N</i> -(4-Methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr). Journal of Agricultural and Food Chemistry, 2015, 63, 2249-2256.	5.2	38
61	Impact of different preparations on the nutritional value of the edible caterpillar Imbrasia epimethea from northern Angola. European Food Research and Technology, 2017, 243, 769-778.	3.3	38
62	Modification of collagen in vitro with respect to formation of NÉ›-carboxymethyllysine. International Journal of Biological Macromolecules, 2009, 44, 51-56.	7.5	37
63	Release of pyrraline in absorbable peptides during simulated digestion of casein glycated by 3-deoxyglucosone. European Food Research and Technology, 2013, 237, 47-55.	3.3	37
64	Microbial transglutaminase crosslinks β-casein and β-lactoglobulin to heterologous oligomers under high pressure. European Food Research and Technology, 2003, 216, 15-17.	3.3	36
65	Dietary Influence on Urinary Excretion of 3-Deoxyglucosone and Its Metabolite 3-Deoxyfructose. Journal of Agricultural and Food Chemistry, 2014, 62, 2449-2456.	5.2	36
66	Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme inÂvivo. International Dairy Journal, 2016, 52, 107-114.	3.0	36
67	Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coordination Chemistry Reviews, 2019, 386, 267-309.	18.8	36
68	Crosslinking of casein by microbial transglutaminase and its resulting influence on the stability of micelle structure. Biotechnology Journal, 2007, 2, 456-461.	3.5	35
69	Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. Journal of Agricultural and Food Chemistry, 2019, 67, 11307-11311.	5.2	35
70	Determination of protein-bound 2-amino-6-(2-formyl-1-pyrrolyl)-hexanoic acid (?pyrraline?) by ion exchange Chromatography and photodiode array detection. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 1-4.	0.6	34
71	Tryptophan-containing dipeptides are C-domain selective inhibitors of angiotensin converting enzyme. Food Chemistry, 2015, 166, 596-602.	8.2	34
72	Studies on N-Terminal Glycation of Peptides in Hypoallergenic Infant Formulas:Â Quantification of α-N-(2-Furoylmethyl) Amino Acids. Journal of Agricultural and Food Chemistry, 2007, 55, 723-727.	5.2	33

#	Article	IF	CITATIONS
73	High Molecular Weight Coffee Melanoidins Are Inhibitors for Matrix Metalloproteases. Journal of Agricultural and Food Chemistry, 2011, 59, 11417-11423.	5.2	33
74	Occurrence of (<i>Z</i>)-3,4-Dideoxyglucoson-3-ene in Different Types of Beer and Malt Beer as a Result of 3-Deoxyhexosone Interconversion. Journal of Agricultural and Food Chemistry, 2016, 64, 2746-2753.	5.2	33
75	Maillard Reaction Products in Different Types of Brewing Malt. Journal of Agricultural and Food Chemistry, 2020, 68, 14274-14285.	5.2	33
76	Influence of the Maillard Reaction on the Allergenicity of Food Proteins and the Development of Allergic Inflammation. Current Allergy and Asthma Reports, 2019, 19, 4.	5.3	32
77	Formyline, a new glycation compound from the reaction of lysine and 3-deoxypentosone. European Food Research and Technology, 2010, 230, 903-914.	3.3	31
78	Honey – a potential agent against Porphyromonas gingivalis: an in vitro study. BMC Oral Health, 2014, 14, 24.	2.3	31
79	Stability of microbial transglutaminase to high pressure treatment. European Food Research and Technology, 2001, 213, 273-276.	3.3	30
80	Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (<i>Leptospermum) Tj ETQq0 0 0 rgBT /0</i>	Dverlock 1	0
81	Cross-linking with microbial transglutaminase: Relationship between polymerisation degree and stiffness of acid casein gels. International Dairy Journal, 2014, 38, 174-178.	3.0	29
82	Selective release of ACE-inhibiting tryptophan-containing dipeptides from food proteins by enzymatic hydrolysis. European Food Research and Technology, 2013, 237, 27-37.	3.3	28
83	Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products. Journal of Agricultural and Food Chemistry, 2017, 65, 10562-10570.	5.2	28
84	Reassembling of Alkali-Treated Casein Micelles by Microbial Transglutaminase. Journal of Agricultural and Food Chemistry, 2018, 66, 11748-11756.	5.2	28
85	<i>Evaluating the Extent of Protein Damage in Dairy Products</i> . Annals of the New York Academy of Sciences, 2008, 1126, 300-306.	3.8	27
86	4-Hydroxy-2-nonenal (4-HNE) and Its Lipation Product 2-Pentylpyrrole Lysine (2-PPL) in Peanuts. Journal of Agricultural and Food Chemistry, 2015, 63, 5273-5281.	5.2	27
87	Individual Maillard reaction products as indicators of heat treatment of pasta — A survey of commercial products. Journal of Food Composition and Analysis, 2018, 72, 83-92.	3.9	27
88	An oral load of the early glycation compound lactuloselysine fails to accumulate in the serum of uraemic patients. Nephrology Dialysis Transplantation, 2006, 21, 383-388.	0.7	26

89	Studies on the impact of glycation on the denaturation of whey proteins. European Food Research and Technology, 2009, 228, 643-649.	3.3	24
90	Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Food Chemistry, 2017, 230, 540-546.	8.2	24

#	Article	IF	CITATIONS
91	Formation of 3-deoxyglucosone in the malting process. Food Chemistry, 2019, 290, 187-195.	8.2	24
92	Flavour compounds in backslop fermented uji (an East African sour porridge). European Food Research and Technology, 2004, 218, 579-583.	3.3	23
93	Isolation and identification of 3,4-dideoxypentosulose as specific degradation product of oligosaccharides with 1,4-glycosidic linkages. European Food Research and Technology, 2006, 223, 803-810.	3.3	23
94	Studies on the Reaction of <i>trans</i> -2-Heptenal with Peanut Proteins. Journal of Agricultural and Food Chemistry, 2014, 62, 8500-8507.	5.2	23
95	Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydrate Polymers, 2018, 199, 102-108.	10.2	23
96	Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat. Journal of Agricultural and Food Chemistry, 2019, 67, 5874-5881.	5.2	23
97	Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Protein Sequences, and Model Peptides. Inorganic Chemistry, 2019, 58, 4173-4189.	4.0	22
98	Studies on the formation of lysinomethylalanine and histidinomethylalanine in milk products. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 243-247.	0.6	21
99	Oligomerization of β-lactoglobulin by microbial transglutaminase during high pressure treatment. European Food Research and Technology, 2001, 213, 246-247.	3.3	20
100	Formation of Peptide-Bound Heyns Compounds. Journal of Agricultural and Food Chemistry, 2008, 56, 2522-2527.	5.2	20
101	Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 75-82.	4.3	20
102	Towards a continuous adsorption process for the enrichment of ACE-inhibiting peptides from food protein hydrolysates. Carbon, 2016, 107, 116-123.	10.3	20
103	Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (<i>Leptospermum) Tj ETQq1 1 0.78431-</i>	4 rgBT /O	verlock 10 T
104	Non-enzymatic modifications of proteins under high-pressure treatment. High Pressure Research, 2010, 30, 458-465.	1.2	18
105	Complexation, Computational, Magnetic, and Structural Studies of the Maillard Reaction Product Isomaltol Including Investigation of an Uncommon π Interaction with Copper(II). Inorganic Chemistry, 2011, 50, 1498-1505.	4.0	18
106	Studies on the interaction of the aromatic amino acids tryptophan, tyrosine and phenylalanine as well as tryptophan-containing dipeptides with cyclodextrins. European Food Research and Technology, 2018, 244, 1511-1519.	3.3	18
107	Plasma concentrations and ACE-inhibitory effects of tryptophan-containing peptides from whey protein hydrolysate in healthy volunteers. European Journal of Nutrition, 2020, 59, 1135-1147.	3.9	18
108	Biodistribution and catabolism of 18F-labeled N-Îμ-fructoselysine as a model of Amadori products. Nuclear Medicine and Biology, 2006, 33, 865-873.	0.6	16

#	Article	IF	CITATIONS
109	Cross-linking of Hen Egg White Lysozyme by Microbial Transglutaminase under High Hydrostatic Pressure: Localization of Reactive Amino Acid Side Chains. Journal of Agricultural and Food Chemistry, 2010, 58, 12749-12752.	5.2	16
110	Association between Advanced Glycation End Products and Impaired Fasting Glucose: Results from the SALIA Study. PLoS ONE, 2015, 10, e0128293.	2.5	16
111	Acid-Induced Gelation of Caseins Glycated with Lactose: Impact of Maillard Reaction-Based Glycoconjugation and Protein Cross-Linking. Journal of Agricultural and Food Chemistry, 2018, 66, 11477-11485.	5.2	16
112	<i>Model Studies on Protein Glycation</i> . Annals of the New York Academy of Sciences, 2008, 1126, 248-252.	3.8	15
113	Affinity of Microbial Transglutaminase to αs1-, β-, and Acid Casein under Atmospheric and High Pressure Conditions. Journal of Agricultural and Food Chemistry, 2009, 57, 4177-4184.	5.2	14
114	Quantification of the glycation compound 6-(3-hydroxy-4-oxo-2-methyl-4(1H)-pyridin-1-yl)-l-norleucine (maltosine) in model systems and food samples. European Food Research and Technology, 2016, 242, 547-557.	3.3	14
115	Lectin-like oxidized low-density lipoprotein receptor-1 promotes endothelial dysfunction in LDL receptor knockout background. Atherosclerosis Supplements, 2017, 30, 294-302.	1.2	14
116	Homocysteine in food. European Food Research and Technology, 2008, 226, 933-935.	3.3	13
117	Extraction of ACE-inhibiting dipeptides from protein hydrolysates using porous carbon materials. Carbon, 2014, 77, 191-198.	10.3	13
118	Enhancing ACE-inhibition of food protein hydrolysates by selective adsorption using porous carbon materials. Carbon, 2015, 87, 309-316.	10.3	13
119	Risk-seeking for losses is associated with 5-HTTLPR, but not with transient changes in 5-HT levels. Psychopharmacology, 2018, 235, 2151-2165.	3.1	13
120	Study on β-Casein Depleted Casein Micelles: Micellar Stability, Enzymatic Cross-Linking, and Suitability as Nanocarriers. Journal of Agricultural and Food Chemistry, 2020, 68, 13940-13949.	5.2	13
121	Modification of β-lactoglobulin by microbial transglutaminase under high hydrostatic pressure: Localization of reactive glutamine residues. Biotechnology Journal, 2007, 2, 462-468.	3.5	12
122	Identification and Quantitation of the Lipation Product 2-Amino-6-(3-methylpyridin-1-ium-1-yl)hexanoic Acid (MP-Lysine) in Peanuts. Journal of Agricultural and Food Chemistry, 2016, 64, 6605-6612.	5.2	12
123	Transformation of Free and Dipeptideâ€Bound Glycated Amino Acids by Two Strains of <i>Saccharomyces cerevisiae</i> . ChemBioChem, 2017, 18, 266-275.	2.6	12
124	Influence of 3-DG as a Key Precursor Compound on Aging of Lager Beers. Journal of Agricultural and Food Chemistry, 2021, 69, 3732-3740.	5.2	12
125	Contribution to the ongoing discussion on fluoride toxicity. Archives of Toxicology, 2021, 95, 2571-2587.	4.2	12
126	A Comprehensive Evaluation of Flavor Instability of Beer (Part 2): The Influence of De Novo Formation of Aging Aldehydes. Foods, 2021, 10, 2668.	4.3	12

#	Article	IF	CITATIONS
127	Determination of Optimum Conditions for Enzymatic Debranching of Cassava Starch and Synthesis of Resistant Starch Type III using Central Composite Rotatable Design. Starch/Staerke, 2009, 61, 367-376.	2.1	11
128	Quantification of Amadori products in cheese. European Food Research and Technology, 2011, 233, 243-251.	3.3	11
129	Pilot study on the discrimination of commercial Leptospermum honeys from New Zealand and Australia by HPLC–MS/MS analysis. European Food Research and Technology, 2018, 244, 1203-1209.	3.3	11
130	Yeast Metabolites of Glycated Amino Acids in Beer. Journal of Agricultural and Food Chemistry, 2018, 66, 7451-7460.	5.2	11
131	Mild hydrothermally treated brewer's spent grain for efficient removal of uranyl and rare earth metal ions. RSC Advances, 2020, 10, 45116-45129.	3.6	11
132	Quantitation of free glycation compounds in saliva. PLoS ONE, 2019, 14, e0220208.	2.5	10
133	Acute tryptophan loading decreases functional connectivity between the default mode network and emotionâ€related brain regions. Human Brain Mapping, 2019, 40, 1844-1855.	3.6	10
134	Transcriptional regulation of the <i>N</i> _ε â€fructoselysine metabolism in <i>Escherichia coli</i> by global and substrateâ€specific cues. Molecular Microbiology, 2021, 115, 175-190.	2.5	10
135	<i>Nâ€ŧerminal Glycation of Proteins and Peptides in Foods and</i> <scp>in Vivo</scp> . Annals of the New York Academy of Sciences, 2008, 1126, 118-123.	3.8	9
136	31P NMR spectroscopic investigations of caseins treated with microbial transglutaminase. Food Hydrocolloids, 2012, 28, 36-45.	10.7	9
137	Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget, 2016, 7, 73292-73308.	1.8	9
138	Quantification of Maillard reaction products in animal feed. European Food Research and Technology, 2020, 246, 253-256.	3.3	9
139	In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	4.0	9
140	Reduction of 5-Hydroxymethylfurfural and 1,2-Dicarbonyl Compounds by <i>Saccharomyces cerevisiae</i> in Model Systems and Beer. Journal of Agricultural and Food Chemistry, 2021, 69, 12807-12817.	5.2	9
141	Self-association of casein studied using enzymatic cross-linking at different temperatures. Food Bioscience, 2019, 28, 89-98.	4.4	8
142	Maillard Reaction of Proteins and Advanced Glycation End Products (AGEs) in Food. , 0, , 215-242.		7
143	Isolation and identification of Di-D-fructose dianhydrides resulting from heat-induced degradation of inulin. European Food Research and Technology, 2011, 233, 151-158.	3.3	7
144	Food Protein Sterylation: Chemical Reactions between Reactive Amino Acids and Sterol Oxidation Products under Food Processing Conditions. Foods, 2020, 9, 1882.	4.3	7

#	Article	IF	CITATIONS
145	The Effects of AGEing on Diet. American Journal of Pathology, 2009, 174, 351-353.	3.8	6
146	Studies on the influence of dietary 3-deoxyglucosone on the urinary excretion of 2-keto-3-deoxygluconic acid. European Food Research and Technology, 2018, 244, 1389-1396.	3.3	6
147	Tailoring the Adsorption of ACE-Inhibiting Peptides by Nitrogen Functionalization of Porous Carbons. Langmuir, 2019, 35, 9721-9731.	3.5	6
148	Acid-Induced Gelation of Enzymatically and Nonenzymatically Cross-Linked Caseins—Texture Properties, and Microstructural Insights. Journal of Agricultural and Food Chemistry, 2020, 68, 13970-13981.	5.2	6
149	Human monocyte-derived type 1 and 2 macrophages recognize Ara h 1, a major peanut allergen, by different mechanisms. Scientific Reports, 2021, 11, 10141.	3.3	6
150	Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium). Food Research International, 2017, 99, 469-475.	6.2	6
151	A convenient HPLC assay for the determination of fructosamine-3-kinase activity in erythrocytes. Analytical and Bioanalytical Chemistry, 2006, 386, 2019-2025.	3.7	5
152	Influence of high hydrostatic pressure on the reaction between glyoxal and lysine residues. European Food Research and Technology, 2017, 243, 1355-1361.	3.3	5
153	MG-HCr, the Methylglyoxal-Derived Hydroimidazolone of Creatine, a Biomarker for the Dietary Intake of Animal Source Food. Journal of Agricultural and Food Chemistry, 2020, 68, 4966-4972.	5.2	5
154	Association of Enzymatically and Nonenzymatically Functionalized Caseins Analyzed by Size-Exclusion Chromatography and Light-Scattering Techniques. Journal of Agricultural and Food Chemistry, 2020, 68, 2773-2782.	5.2	5
155	Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso compounds—a hypothesis. Archives of Toxicology, 2022, 96, 1905-1914.	4.2	5
156	Studies about the Dietary Impact on "Free―Glycation Compounds in Human Saliva. Foods, 2022, 11, 2112.	4.3	5
157	A new HPLC-based assay for the measurement of fructosamine-3-kinase (FN3K) and FN3K-related protein activity in human erythrocytes. Clinical Chemistry and Laboratory Medicine, 2014, 52, 93-101.	2.3	4
158	Natural Association of Lysozyme and Casein Micelles in Human Milk. Journal of Agricultural and Food Chemistry, 2022, 70, 1652-1658.	5.2	4
159	Glycation of N-Îμ-carboxymethyllysine. European Food Research and Technology, 2022, 248, 825-837.	3.3	4
160	Identification of <i>Pseudomonas asiatica</i> subsp. <i>bavariensis</i> str. <scp>JM1</scp> as the first <i>N</i> _{<i>ε</i>} â€carboxy(m)ethyllysineâ€degrading soil bacterium. Environmental Microbiology, 2022, 24, 3229-3241.	3.8	4
161	Isolation and quantification in food of 6-(2-formyl-5-methylpyrrol-1-yl)-l-norleucine ("rhamnolysineâ€) and its precursor 3,6-dideoxy-l-mannosone. European Food Research and Technology, 2019, 245, 1149-1159.	3.3	3
162	Synthesis of pyrraline reference material. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 72-74.	0.6	3

#	Article	IF	CITATIONS
163	Advanced Glycation End Products (AGEs): Occurrence and Risk Assessment. , 2019, , 525-531.		2
164	Unusual Absence of Head-to-Tail Chains in the Crystal Structure of Glycyl-I-glutamyl-I-phosphoseryl-I-leucine. Journal of Chemical Crystallography, 2012, 42, 839-845.	1.1	1
165	Hydrolysis by Indigenous Plasmin: Consequences for Enzymatic Cross-Linking and Acid-Induced Gel Formation of Non-Micellar Casein. Food Biophysics, 2020, 15, 32-41.	3.0	1
166	Peptization Control of Composite Materials Containing Water Glass for Spray Drying of Catalysts. Chemical Engineering and Technology, 2021, 44, 732-740.	1.5	1
167	Glycerol-bound oxidized fatty acids: formation and occurrence in peanuts. European Food Research and Technology, 2022, 248, 2053-2066.	3.3	1
168	Identification of the initial reactive sites of micellar and non-micellar casein exposed to microbial transglutaminase. European Food Research and Technology, 2022, 248, 2553-2568.	3.3	1
169	Insights at the molecular level into the formation of oxo-bridged trinuclear uranyl complexes. Chemical Communications, 2022, 58, 1748-1751.	4.1	0