Simon P Langdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841760/publications.pdf Version: 2024-02-01

SIMON PLANCOON

#	Article	IF	CITATIONS
1	Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific Reports, 2015, 5, 10775.	3.3	447
2	Functional Restoration of BRCA2 Protein by Secondary <i>BRCA2</i> Mutations in <i>BRCA2</i> Mutated Ovarian Carcinoma. Cancer Research, 2009, 69, 6381-6386.	0.9	280
3	New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treatment Reviews, 2013, 39, 171-179.	7.7	167
4	Antiestrogen Therapy Is Active in Selected Ovarian Cancer Cases: The Use of Letrozole in Estrogen Receptor–Positive Patients. Clinical Cancer Research, 2007, 13, 3617-3622.	7.0	156
5	Systems Biology Reveals New Strategies for Personalizing Cancer Medicine and Confirms the Role of PTEN in Resistance to Trastuzumab. Cancer Research, 2009, 69, 6713-6720.	0.9	152
6	Altered ErbB Receptor Signaling and Gene Expression in Cisplatin-Resistant Ovarian Cancer. Cancer Research, 2005, 65, 6789-6800.	0.9	135
7	Estrogen receptor- $\hat{l}\pm$ mediates gene expression changes and growth response in ovarian cancer cells exposed to estrogen. Endocrine-Related Cancer, 2005, 12, 851-866.	3.1	129
8	A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget, 2015, 6, 25677-25695.	1.8	115
9	CA125 response is associated with estrogen receptor expression in a phase II trial of letrozole in ovarian cancer: identification of an endocrine-sensitive subgroup. Clinical Cancer Research, 2002, 8, 2233-9.	7.0	115
10	Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of <i>in vitro</i> breast cancer models. Oncotarget, 2015, 6, 24856-24870.	1.8	76
11	Development and characterisation of acquired radioresistant breast cancer cell lines. Radiation Oncology, 2019, 14, 64.	2.7	72
12	Estrogen-regulated gene expression predicts response to endocrine therapy in patients with ovarian cancer. Gynecologic Oncology, 2007, 106, 461-468.	1.4	67
13	Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer, 2018, 18, 636.	2.6	66
14	Neuregulin expression, function, and signaling in human ovarian cancer cells. Clinical Cancer Research, 2002, 8, 3933-42.	7.0	66
15	Inhibition of pH regulation as a therapeutic strategy in hypoxic human breast cancer cells. Oncotarget, 2017, 8, 42857-42875.	1.8	62
16	The impact of tumour pH on cancer progression: strategies for clinical intervention. , 2020, 1, 71-100.		60
17	Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer. Biochemical Society Transactions, 2014, 42, 1017-1023.	3.4	58
18	Ureido-substituted sulfamates show potent carbonic anhydrase IX inhibitory and antiproliferative activities against breast cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4681-4685.	2.2	57

#	Article	IF	CITATIONS
19	Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-talk with estrogen receptor signaling. Molecular Cancer Therapeutics, 2007, 6, 93-100.	4.1	56
20	Trastuzumab and Pertuzumab Produce Changes in Morphology and Estrogen Receptor Signaling in Ovarian Cancer Xenografts Revealing New Treatment Strategies. Clinical Cancer Research, 2011, 17, 4451-4461.	7.0	56
21	Effect of matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. , 1996, 67, 816-820.		55
22	Insulin-like Growth Factor Binding Proteins IGFBP3, IGFBP4, and IGFBP5 Predict Endocrine Responsiveness in Patients with Ovarian Cancer. Clinical Cancer Research, 2007, 13, 1438-1444.	7.0	54
23	Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites, 2018, 8, 13.	2.9	52
24	Endocrine therapy resistance can be associated with high estrogen receptor α (ERα) expression and reduced ERα phosphorylation in breast cancer models. Endocrine-Related Cancer, 2006, 13, 1121-1133.	3.1	49
25	Estrogen Signaling and Its Potential as a Target for Therapy in Ovarian Cancer. Cancers, 2020, 12, 1647.	3.7	49
26	c-erbb growth-factor-receptor proteins in ovarian tumours. International Journal of Cancer, 1995, 64, 202-206.	5.1	48
27	HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Research, 2019, 21, 10.	5.0	48
28	Sprouty 2 Is an Independent Prognostic Factor in Breast Cancer and May Be Useful in Stratifying Patients for Trastuzumab Therapy. PLoS ONE, 2011, 6, e23772.	2.5	43
29	Gonadotropin-Releasing Hormone Receptor Levels and Cell Context Affect Tumor Cell Responses to Agonist <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2008, 68, 6331-6340.	0.9	42
30	Data-independent Proteomic Screen Identifies Novel Tamoxifen Agonist that Mediates Drug Resistance. Journal of Proteome Research, 2011, 10, 4567-4578.	3.7	42
31	Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. British Journal of Cancer, 2016, 114, 905-916.	6.4	42
32	Anterior Gradient-3: A novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models. Journal of Immunological Methods, 2012, 378, 20-32.	1.4	41
33	Endocrine therapy in epithelial ovarian cancer. Expert Review of Anticancer Therapy, 2017, 17, 109-117.	2.4	41
34	Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers. PLoS ONE, 2015, 10, e0144708.	2.5	40
35	Structural studies on bioactive compounds. 4. A structure-antitumor activity study on analogs of N-methylformamide. Journal of Medicinal Chemistry, 1986, 29, 1046-1052.	6.4	39
36	Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis, 2006, 27, 729-739.	2.8	39

#	Article	IF	CITATIONS
37	Contrasting effects of 17 β-estradiol on the growth of human ovarian carcinoma cellsin vitro andin vivo. International Journal of Cancer, 1993, 55, 459-464.	5.1	38
38	Modulation of HER3 Is a Marker of Dynamic Cell Signaling in Ovarian Cancer: Implications for Pertuzumab Sensitivity. Molecular Cancer Research, 2009, 7, 1563-1571.	3.4	38
39	Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. European Journal of Pharmaceutical Sciences, 2012, 46, 244-258.	4.0	35
40	Growth-inhibitory effects of the synthetic retinoid CD437 against ovarian carcinoma models in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 1998, 42, 429-432.	2.3	34
41	Animal Modeling of Cancer Pathology and Studying Tumor Response to Therapy. Current Drug Targets, 2012, 13, 1535-1547.	2.1	34
42	Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. Journal of Biotechnology, 2015, 202, 12-30.	3.8	34
43	Precision Medicine and the Role of Biomarkers of Radiotherapy Response in Breast Cancer. Frontiers in Oncology, 2020, 10, 628.	2.8	34
44	Carbonic anhydrase inhibitors based on sorafenib scaffold: Design, synthesis, crystallographic investigation and effects on primary breast cancer cells. European Journal of Medicinal Chemistry, 2019, 182, 111600.	5.5	33
45	Cell Culture Contamination: An Overview. , 2004, 88, 309-318.		31
46	Gonadotropin-Releasing Hormone Analog Structural Determinants of Selectivity for Inhibition of Cell Growth: Support for the Concept of Ligand-Induced Selective Signaling. Molecular Endocrinology, 2008, 22, 1711-1722.	3.7	31
47	Antisense Oligonucleotide Targeting of Raf-1. Clinical Cancer Research, 2004, 10, 2100-2108.	7.0	30
48	Increased STAT1 Signaling in Endocrine-Resistant Breast Cancer. PLoS ONE, 2014, 9, e94226.	2.5	28
49	Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy. Cells, 2014, 3, 563-591.	4.1	28
50	A novel mechanism of action of HER2 targeted immunotherapy is explained by inhibition of NRF2 function in ovarian cancer cells. Oncotarget, 2016, 7, 75874-75901.	1.8	27
51	Pertuzumab for the treatment of ovarian cancer. Expert Opinion on Biological Therapy, 2010, 10, 1113-1120.	3.1	26
52	The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget, 2016, 7, 4695-4711.	1.8	26
53	N-methylformamide (NSC 3051): a potenial candidate for combination chemotherapy. European Journal of Cancer & Clinical Oncology, 1985, 21, 745-752.	0.7	24
54	Role of TGFα stimulation of the ERK, PI3 kinase and PLCγ pathways in ovarian cancer growth and migration. Experimental Cell Research, 2005, 304, 305-316.	2.6	24

#	Article	IF	CITATIONS
55	Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer. Cellular Signalling, 2013, 25, 26-32.	3.6	24
56	The formation and metabolism of N-hydroxymethyl compounds-IV. Biochemical Pharmacology, 1983, 32, 3037-3043.	4.4	22
57	Predicting response to the anti-estrogen fulvestrant in recurrent ovarian cancer. Gynecologic Oncology, 2013, 131, 368-373.	1.4	22
58	Progressive Loss of Estrogen Receptor α Cofactor Recruitment in Endocrine Resistance. Molecular Endocrinology, 2007, 21, 2615-2626.	3.7	21
59	HER2 expression in ovarian carcinoma: caution and complexity in biomarker analysis. Journal of Clinical Pathology, 2012, 65, 670-671.	2.0	21
60	NRF2 Regulates HER1 Signaling Pathway to Modulate the Sensitivity of Ovarian Cancer Cells to Lapatinib and Erlotinib. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-19.	4.0	20
61	Compensatory effects in the PI3K/PTEN/AKT signaling network following receptor tyrosine kinase inhibition. Cellular Signalling, 2011, 23, 407-416.	3.6	19
62	Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. European Journal of Cancer, 2011, 47, 1420-1431.	2.8	18
63	Evaluation of the dual mTOR/PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models. Scientific Reports, 2019, 9, 18742.	3.3	18
64	Predictive markers of endocrine response in breast cancer. World Journal of Experimental Medicine, 2018, 8, 1-7.	1.7	18
65	The chemosensitivity of a new experimental model—the M5076 reticulum cell sarcoma. European Journal of Cancer & Clinical Oncology, 1984, 20, 699-705.	0.7	17
66	Features of the reversible sensitivity-resistance transition in PI3K/PTEN/AKT signalling network after HER2 inhibition. Cellular Signalling, 2012, 24, 493-504.	3.6	16
67	Biocompatibility of common implantable sensor materials in a tumor xenograft model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1620-1633.	3.4	16
68	NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-22.	4.0	15
69	Studies of the mode of action of antitumour triazenes and triazines—III. Metabolism studies on hexamethylmelamine. Biochemical Pharmacology, 1982, 31, 625-631.	4.4	14
70	Customizing the Therapeutic Response of Signaling Networks to Promote Antitumor Responses by Drug Combinations. Frontiers in Oncology, 2014, 4, 13.	2.8	14
71	Stability and in vitro metabolism of the mitogenic neuropeptide antagonists [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P and [Arg6, D-Trp7,9, MePhe8-substance P (6–11) characterized by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 1994, 12, 811-819.	2.8	13
72	Studies of the mode of action of antitumour triazenes and triazines—V. The correlation of the in vitro cytotoxicity and in vivo antitumour activity of hexamethylmelamine analogues with their metabolism. Biochemical Pharmacology, 1984, 33, 1131-1136.	4.4	12

#	Article	IF	CITATIONS
73	The antitumour effect and toxicity of cis-platinum and N-methylformamide in combination. Cancer Chemotherapy and Pharmacology, 1986, 16, 139-47.	2.3	12
74	Alkylformamides as inducers of tumour cell differentiation — a mini-review. Toxicology, 1987, 43, 239-249.	4.2	12
75	Activity profile of the novel aziridinylbenzoquinones MeDZQ and RH1 in human tumour xenografts. Anticancer Research, 2003, 23, 3979-83.	1.1	11
76	Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation. Endocrine-Related Cancer, 2013, 20, 123-136.	3.1	10
77	Isolation and Culture of Ovarian Cancer Cell Lines. , 2004, 88, 133-140.		9
78	Comparison of strategies targeting Raf-1 mRNA in ovarian cancer. International Journal of Cancer, 2006, 118, 1565-1571.	5.1	9
79	Estrogen Receptor Signaling in Cancer. Cancers, 2020, 12, 2744.	3.7	9
80	Hormone therapy for epithelial ovarian cancer. Current Opinion in Oncology, 2008, 20, 548-553.	2.4	8
81	The influence of type I collagen on the growth and differentiation of the human colonic adenocarcinoma cell line HT-29 in vitro. Differentiation, 1992, 50, 179-188.	1.9	7
82	Pertuzumab for the treatment of metastatic breast cancer. Expert Review of Anticancer Therapy, 2013, 13, 907-918.	2.4	7
83	Technical innovation in adjuvant radiotherapy: Evolution and evaluation of new treatments for today and tomorrow. Breast, 2015, 24, S114-S119.	2.2	7
84	Characterization and Authentication of Cancer Cell Lines: An Overview. , 2004, 88, 33-42.		6
85	Investigations of the relationship between cell proliferation and differentiation of HL-60 cells induced to differentiate by N-methylformamide. Leukemia Research, 1988, 12, 211-216.	0.8	5
86	Basic Principles of Cancer Cell Culture. , 2004, 88, 3-16.		5
87	Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer, 2016, 16, 205.	2.6	5
88	Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002. European Journal of Pharmaceutical Sciences, 2017, 97, 170-181.	4.0	4
89	Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. , 2019, 2, 490-515.		4
90	How can systems pathology help us personalize cancer therapy?. Discovery Medicine, 2009, 8, 81-6.	0.5	3

#	Article	IF	CITATIONS
91	Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment. Current Topics in Microbiology and Immunology, 2019, , 225.	1.1	1
92	Novel Monte Carlo approach quantifies data assemblage utility and reveals power of integrating molecular and clinical information for cancer prognosis. Scientific Reports, 2015, 5, 15563.	3.3	0
93	Nuclear factor erythroid 2-related factor 2 modulates HER4 receptor in ovarian cancer cells to influence their sensitivity to tyrosine kinase inhibitors. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.8	ο
94	Collateral-resistance to estrogen and HER-activated growth is associated with modified AKT, ERα, and cell-cycle signaling in a breast cancer model. Exploration of Targeted Anti-tumor Therapy, 2022, 3, 97-116.	0.8	0