Nathan J Sanders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological strategies of (pl)ants: Towards a worldâ€wide worker economic spectrum for ants. Functional Ecology, 2023, 37, 13-25.	1.7	9
2	Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization. Ecology, 2022, 103, e03546.	1.5	6
3	Warm and arid regions of the world are hotspots of superorganism complexity. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211899.	1.2	8
4	Turnover in butterfly communities and traits along an elevational gradient in the eastern Himalaya, India. Ecosphere, 2022, 13, .	1.0	7
5	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	6.0	62
6	Sodium-enriched floral nectar increases pollinator visitation rate and diversity. Biology Letters, 2022, 18, 20220016.	1.0	15
7	The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecology and Biogeography, 2022, 31, 486-500.	2.7	11
8	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	4.7	40
9	A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology, 2021, 102, e03233.	1.5	14
10	Thirty-six years of legal and illegal wildlife trade entering the USA. Oryx, 2021, 55, 432-441.	0.5	13
11	Climate and multiple dimensions of plant diversity regulate ecosystem carbon exchange along an elevational gradient. Ecosphere, 2021, 12, e03472.	1.0	4
12	Abundance of spring―and winterâ€active arthropods declines with warming. Ecosphere, 2021, 12, e03473.	1.0	12
13	The toughest animals of the Earth versus global warming: Effects of longâ€ŧerm experimental warming on tardigrade community structure of a temperate deciduous forest. Ecology and Evolution, 2021, 11, 9856-9863.	0.8	2
14	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial βâ€diversity. Ecosphere, 2021, 12, e03644.	1.0	12
15	β diversity among ant communities on fragmented habitat islands: the roles of species trait, phylogeny and abundance. Ecography, 2021, 44, 1568-1578.	2.1	21
16	Multiyear drought exacerbates longâ€ŧerm effects of climate on an invasive ant species. Ecology, 2021, 102, e03476.	1.5	6
17	Long-term trends in the occupancy of ants revealed through use of multi-sourced datasets. Biology Letters, 2021, 17, 20210240.	1.0	6
18	Journal journeys: Building on our reputation in animal ecology with new ways to publish. Journal of Animal Ecology, 2021, 90, 2724-2725.	1.3	0

#	Article	IF	CITATIONS
19	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	4.2	145
20	Do Dominant Ants Affect Secondary Productivity, Behavior and Diversity in a Guild of Woodland Ants?. Diversity, 2020, 12, 460.	0.7	3
21	The Coupled Influence of Thermal Physiology and Biotic Interactions on the Distribution and Density of Ant Species along an Elevational Gradient. Diversity, 2020, 12, 456.	0.7	9
22	Salty, mild, and low plant biomass grasslands increase topâ€heaviness of invertebrate trophic pyramids. Global Ecology and Biogeography, 2020, 29, 1474-1485.	2.7	20
23	Variation in the methods leads to variation in the interpretation of biodiversity–ecosystem multifunctionality relationships. Journal of Plant Ecology, 2020, 13, 431-441.	1.2	17
24	Bottomâ€up when it is not topâ€down: Predators and plants control biomass of grassland arthropods. Journal of Animal Ecology, 2020, 89, 1286-1294.	1.3	25
25	Testing tradeâ€offs and the dominance–impoverishment rule among ant communities. Journal of Biogeography, 2020, 47, 1899-1909.	1.4	4
26	A new Editor team. Journal of Animal Ecology, 2020, 89, 4-5.	1.3	1
27	Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation. Functional Ecology, 2020, 34, 1497-1506.	1.7	7
28	Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 2020, 23, 701-710.	3.0	124
29	Monitoring the influx of new species through citizen science: the first introduced ant in Denmark. PeerJ, 2020, 8, e8850.	0.9	11
30	Goodbye and farewell to print. Journal of Animal Ecology, 2019, 88, 4-7.	1.3	0
31	Fungal colonization of plant roots is resistant to nitrogen addition and resilient to dominant species losses. Ecosphere, 2019, 10, e02640.	1.0	3
32	A distributed experiment demonstrates widespread sodium limitation in grassland food webs. Ecology, 2019, 100, e02600.	1.5	42
33	Herbarium specimens reveal increasing herbivory over the past century. Journal of Ecology, 2019, 107, 105-117.	1.9	56
34	Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere, 2019, 10, e02543.	1.0	38
35	Draft <i>Aphaenogaster</i> genomes expand our view of ant genome size variation across climate gradients. PeerJ, 2019, 7, e6447.	0.9	1
36	Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4051-4056.	3.3	431

#	Article	IF	CITATIONS
37	And the winner of the inaugural Sidnie Manton Award is…. Journal of Animal Ecology, 2018, 87, 527-529.	1.3	2
38	Proportion of fine roots, but not plant biomass allocation below ground, increases with elevation in arctic tundra. Journal of Vegetation Science, 2018, 29, 226-235.	1.1	13
39	Fifty Years of Mountain Passes: A Perspective on Dan Janzen's Classic Article. American Naturalist, 2018, 191, 553-565.	1.0	85
40	Aboveground resilience to species loss but belowground resistance to nitrogen addition in a montane plant community. Journal of Plant Ecology, 2018, 11, 351-363.	1.2	11
41	Transparency and open processes in <i>Journal of Animal Ecology</i> . Journal of Animal Ecology, 2018, 87, 1-3.	1.3	9
42	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	4.2	279
43	Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nature Climate Change, 2018, 8, 986-991.	8.1	44
44	Macroecology to Unite All Life, Large and Small. Trends in Ecology and Evolution, 2018, 33, 731-744.	4.2	118
45	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
46	Using metabolic and thermal ecology to predict temperature dependent ecosystem activity: a test with prairie ants. Ecology, 2018, 99, 2113-2121.	1.5	29
47	Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecology Letters, 2017, 20, 385-394.	3.0	246
48	Elevation alters ecosystem properties across temperate treelines globally. Nature, 2017, 542, 91-95.	13.7	200
49	Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 2017, 57, 112-120.	0.9	35
50	Intraspecific variation in traits reduces ability of traitâ€based models to predict community structure. Journal of Vegetation Science, 2017, 28, 1070-1081.	1.1	27
51	Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology, 2017, 98, 1757-1763.	1.5	119
52	Sodium coâ€limits and catalyzes macronutrients in a prairie food web. Ecology, 2017, 98, 315-320.	1.5	40
53	Like a rolling stone: the dynamic world of animal ecology publishing. Journal of Animal Ecology, 2017, 86, 1-3.	1.3	3
54	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37

#	Article	IF	CITATIONS
55	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
56	Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Functional Ecology, 2017, 31, 1091-1100.	1.7	59
57	On the controls of abundance for soilâ€dwelling organisms on the Tibetan Plateau. Ecosphere, 2017, 8, e01901.	1.0	11
58	Nests of red wood ants (<i>Formica rufa</i> -group) are positively associated with tectonic faults: a double-blind test. PeerJ, 2017, 5, e3903.	0.9	9
59	Detection probabilities for sessile organisms. Ecosphere, 2016, 7, e01546.	1.0	15
60	Climatic warming destabilizes forest ant communities. Science Advances, 2016, 2, e1600842.	4.7	53
61	The distribution and diversity of insular ants: do exotic species play by different rules?. Global Ecology and Biogeography, 2016, 25, 642-654.	2.7	14
62	Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species. BMC Genomics, 2016, 17, 171.	1.2	19
63	Geographical variation in the importance of water and energy for oak diversity. Journal of Biogeography, 2016, 43, 279-288.	1.4	54
64	Bottom–up and top–down effects on plant communities: nutrients limit productivity, but insects determine diversity and composition. Oikos, 2016, 125, 566-575.	1.2	22
65	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	1.2	127
66	Island biology and the consequences of interspecific interactions. Journal of Biogeography, 2015, 42, 2255-2256.	1.4	0
67	Above―and belowâ€ground effects of plant diversity depend on species origin: an experimental test with multiple invaders. New Phytologist, 2015, 208, 727-735.	3.5	24
68	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	1.2	58
69	The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 2015, 6, 8159.	5.8	471
70	Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages. PLoS ONE, 2014, 9, e88029.	1.1	24
71	Predicting future coexistence in a N orth A merican ant community. Ecology and Evolution, 2014, 4, 1804-1819.	0.8	16
72	Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. Journal of Biogeography, 2014, 41, 2245-2255.	1.4	24

#	Article	IF	CITATIONS
73	Effects of co-occurring non-native invasive plant species on old-field succession. Forest Ecology and Management, 2014, 324, 196-204.	1.4	30
74	Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 2014, 28, 37-45.	1.7	203
75	Assessing the effects of sodium on fire ant foraging in the field and colony growth in the laboratory. Ecological Entomology, 2014, 39, 267-271.	1.1	8
76	Niche filtering rather than partitioning shapes the structure of temperate forest ant communities. Journal of Animal Ecology, 2014, 83, 943-952.	1.3	39
77	The effects of insects, nutrients, and plant invasion on community structure and function above―and belowground. Ecology and Evolution, 2014, 4, 732-742.	0.8	8
78	The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 2014, 37, 711-719.	2.1	182
79	Geographic differences in effects of experimental warming on ant species diversity and community composition. Ecosphere, 2014, 5, 1-12.	1.0	27
80	Interactions in a warmer world: effects of experimental warming, conspecific density, and herbivory on seedling dynamics. Ecosphere, 2014, 5, 1-12.	1.0	6
81	Ant-mediated seed dispersal in a warmed world. PeerJ, 2014, 2, e286.	0.9	28
82	Microbial communities respond to experimental warming, but site matters. PeerJ, 2014, 2, e358.	0.9	43
83	Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities. Oecologia, 2013, 171, 981-992.	0.9	71
84	Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16503-16507.	3.3	56
85	Community and Ecosystem Responses to Elevational Gradients: Processes, Mechanisms, and Insights for Global Change. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 261-280.	3.8	484
86	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	2.7	121
87	Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131201.	1.2	145
88	Fire ants are drivers of biodiversity loss: a reply to <scp>K</scp> ing and <scp>T</scp> schinkel (2013). Ecological Entomology, 2013, 38, 540-542.	1.1	12
89	Using Physiology to Predict the Responses of Ants to Climatic Warming. Integrative and Comparative Biology, 2013, 53, 965-974.	0.9	35
90	Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 2013, 3, 482-491.	0.8	73

#	Article	IF	CITATIONS
91	Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer. PeerJ, 2013, 1, e100.	0.9	8
92	Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 266-274.	1.2	102
93	Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	6.0	8
94	A physiological traitâ€based approach to predicting the responses of species to experimental climate warming. Ecology, 2012, 93, 2305-2312.	1.5	113
95	Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2012, 2, 3009-3015.	0.8	35
96	Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 194-201.	1.2	186
97	Multiâ€scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography, 2012, 35, 1072-1082.	2.1	26
98	Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species. Ecology and Evolution, 2012, 2, 1151-1161.	0.8	25
99	The patterns and causes of elevational diversity gradients. Ecography, 2012, 35, 1-3.	2.1	363
100	Effects of Treefall Gap Disturbances on Ant Assemblages in a Tropical Montane Cloud Forest. Biotropica, 2012, 44, 472-478.	0.8	14
101	Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biological Invasions, 2012, 14, 557-565.	1.2	54
102	Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity. Oecologia, 2012, 168, 167-174.	0.9	19
103	The mixed effects of experimental ant removal on seedling distribution, belowground invertebrates, and soil nutrients. Ecosphere, 2011, 2, art63.	1.0	31
104	Heating up the forest: openâ€ŧop chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods in Ecology and Evolution, 2011, 2, 534-540.	2.2	57
105	Intraspecific variation in response to warming across levels of organization: a test with <i>Solidago altissima</i> . Ecosphere, 2011, 2, art132.	1.0	6
106	Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms. PLoS ONE, 2011, 6, e29097.	1.1	89
107	Navigating the multiple meanings of Î ² diversity: a roadmap for the practicing ecologist. Ecology Letters, 2011, 14, 19-28.	3.0	1,899
108	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	1.9	87

#	Article	IF	CITATIONS
109	Relative Effects of Disturbance on Red Imported Fire Ants and Native Ant Species in a Longleaf Pine Ecosystem. Conservation Biology, 2011, 25, 618-622.	2.4	20
110	Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography, 2011, 34, 364-371.	2.1	179
111	Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 2011, 34, 836-847.	2.1	81
112	Determinants of the detrital arthropod community structure: the effects of temperature and resources along an environmental gradient. Oikos, 2011, 120, 333-343.	1.2	70
113	Biotic and abiotic influences on native and exotic richness relationship across spatial scales: favourable environments for native species are highly invasible. Functional Ecology, 2011, 25, 1106-1112.	1.7	44
114	Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	6.0	617
115	Similar biotic factors affect early establishment and abundance of an invasive plant species across spatial scales. Biological Invasions, 2011, 13, 255-267.	1.2	13
116	The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem. Oecologia, 2011, 167, 771-780.	0.9	27
117	Influences on the Structure of Suburban Ant (Hymenoptera: Formicidae) Communities and the Abundance of Tapinoma sessile. Environmental Entomology, 2011, 40, 1397-1404.	0.7	12
118	Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2011, 2, art62.	1.0	29
119	Influence of fire on a rare serpentine plant assemblage: A 5â€year study of <i>Darlingtonia</i> fens. American Journal of Botany, 2011, 98, 801-811.	0.8	6
120	Differential effects of two dominant plant species on community structure and invasibility in an old-field ecosystem. Journal of Plant Ecology, 2011, 4, 123-131.	1.2	29
121	Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 220-225.	3.3	128
122	Response of macroarthropod assemblages to the loss of hemlock (<i>Tsuga canadensis</i>), a foundation species. Ecosphere, 2011, 2, art74.	1.0	37
123	Change within and among forest communities: the influence of historic disturbance, environmental gradients, and community attributes. Ecography, 2010, 33, 425-434.	2.1	20
124	Species interactions and thermal constraints on ant community structure. Oikos, 2010, 119, 551-559.	1.2	77
125	Linking soil food web structure to above- and belowground ecosystem processes: a meta-analysis. Oikos, 2010, 119, 1984-1992.	1.2	63
126	Understanding (insect) species distributions across spatial scales. Ecography, 2010, 33, 51-53.	2.1	158

8

#	Article	IF	CITATIONS
127	Population-level traits that affect, and do not affect, invasion success. Molecular Ecology, 2010, 19, 1079-1081.	2.0	5
128	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
129	Metabolic theory and elevational diversity of vertebrate ectotherms. Ecology, 2010, 91, 601-609.	1.5	31
130	Actual and Inferred Checklist of the Aphids (Hemiptera: Aphididae) of the Great Smoky Mountains National Park, with Attendant Ant and Host Plant Associations. Proceedings of the Entomological Society of Washington, 2010, 112, 381-403.	0.0	9
131	Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2088-2092.	3.3	269
132	Invasive ants alter the phylogenetic structure of ant communities. Ecology, 2009, 90, 2664-2669.	1.5	81
133	Disturbance alters local–regional richness relationships in Appalachian forests. Ecology, 2009, 90, 2940-2947.	1.5	33
134	Quantitative analysis of the effects of the exotic Argentine ant on seed-dispersal mutualisms. Biology Letters, 2009, 5, 499-502.	1.0	32
135	Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem. Basic and Applied Ecology, 2009, 10, 535-543.	1.2	56
136	Temperature-mediated coexistence in temperate forest ant communities. Insectes Sociaux, 2009, 56, 149-156.	0.7	85
137	Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 2009, 32, 133-142.	2.1	74
138	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€ s patial regression. Ecography, 2009, 32, 193-204.	2.1	231
139	Plant genetics shapes inquiline community structure across spatial scales. Ecology Letters, 2009, 12, 285-292.	3.0	43
140	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
141	Geographic Gradients. , 2009, , 38-58.		12
142	Diverse Elevational Diversity Gradients in Great Smoky Mountains National Park, U.S.A , 2009, , 75-87.		7
143	Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters, 2008, 11, 16-23.	3.0	150
144	Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem. Plant and Soil, 2008, 303, 95-103.	1.8	16

#	Article	IF	CITATIONS
145	Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia, 2008, 158, 65-75.	0.9	56
146	Rainfall facilitates the spread, and time alters the impact, of the invasive Argentine ant. Oecologia, 2008, 155, 385-395.	0.9	56
147	Data sets matter, but so do evolution and ecology. Global Ecology and Biogeography, 2008, 17, 562-565.	2.7	25
148	Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence. Functional Ecology, 2008, 22, 816-823.	1.7	21
149	The effects of the invasive Argentine ant (<i>Linepithema humile</i>) and the native ant <i>Prenolepis imparis </i> on the structure of insect herbivore communities on willow trees (<i>Salix lasiolepis</i>). Ecological Entomology, 2008, 33, 789-795.	1.1	8
150	Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecologica, 2008, 34, 155-162.	0.5	65
151	Climate change, plant migration, and range collapse in a global biodiversity hotspot: the <i>Banksia</i> (Proteaceae) of Western Australia. Global Change Biology, 2008, 14, 1337-1352.	4.2	196
152	A REACTION–DIFFUSION EQUATION MODELING THE INVASION OF THE ARGENTINE ANT POPULATION, <i>LINEPITHEMA HUMILE</i> , AT JASPER RIDGE BIOLOGICAL PRESERVE. Natural Resource Modelling, 2008, 21, 330-342.	0.8	2
153	Temporal dynamics in nonâ€additive responses of arthropods to hostâ€plant genotypic diversity. Oikos, 2008, 117, 255-264.	1.2	38
154	Striking a balance between the literature load and walks in the woods. Frontiers in Ecology and the Environment, 2008, 6, 160-161.	1.9	1
155	Rarity and Diversity in Forest Ant Assemblages of Great Smoky Mountains National Park. Southeastern Naturalist, 2007, 6, 215-228.	0.2	35
156	HOST-PLANT GENOTYPIC DIVERSITY MEDIATES THE DISTRIBUTION OF AN ECOSYSTEM ENGINEER. Ecology, 2007, 88, 2114-2120.	1.5	83
157	Reproductive phenologies in a diverse temperate ant fauna. Ecological Entomology, 2007, 32, 135-142.	1.1	32
158	The recovery of ant communities in regenerating temperate conifer forests. Forest Ecology and Management, 2007, 242, 619-624.	1.4	36
159	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	1.5	47
160	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
161	INSECTS MEDIATE THE EFFECTS OF PROPAGULE SUPPLY AND RESOURCE AVAILABILITY ON A PLANT INVASION. Ecology, 2007, 88, 2383-2391.	1.5	30
162	Temporal patterns of diversity: assessing the biotic and abiotic controls on ant assemblages. Biological Journal of the Linnean Society, 2007, 91, 191-201.	0.7	54

#	Article	IF	CITATIONS
163	The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?. Global Ecology and Biogeography, 2007, 16, 24-33.	2.7	300
164	When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Global Ecology and Biogeography, 2007, 16, 305-312.	2.7	73
165	Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 2007, 16, 640-649.	2.7	249
166	Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 2007, 34, 1632-1641.	1.4	83
167	An Ant Mosaic Revisited: Dominant Ant Species Disassemble Arboreal Ant Communities but Co-Occur Randomly. Biotropica, 2007, 39, 422-427.	0.8	65
168	Linking Temporal and Spatial Scales in the Study of an Argentine Ant Invasion. Biological Invasions, 2006, 8, 501-507.	1.2	32
169	Plant Genotypic Diversity Predicts Community Structure and Governs an Ecosystem Process. Science, 2006, 313, 966-968.	6.0	719
170	The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?. Global Ecology and Biogeography, 2006, .	2.7	3
171	The effects of fire, local environment and time on ant assemblages in fens and forests. Diversity and Distributions, 2005, 11, 487-497.	1.9	50
172	Aphid-tending Ants Affect Secondary Users in Leaf Shelters and Rates of Herbivory on Salix hookeriana in a Coastal Dune Habitat. American Midland Naturalist, 2005, 154, 296-304.	0.2	24
173	Multitrophic Effects of Elevated Atmospheric CO ₂ on Understory Plant and Arthropod Communities. Environmental Entomology, 2004, 33, 1609-1616.	0.7	29
174	The interactive effects of climate, life history, and interspecific neighbours on mortality in a population of seed harvester ants. Ecological Entomology, 2004, 29, 632-637.	1.1	24
175	IMMEDIATE EFFECTS OF FIRE ON THE INVASIVE ARGENTINE ANT, LINEPITHEMA HUMILE. Southwestern Naturalist, 2004, 49, 246-250.	0.1	8
176	Community disassembly by an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2474-2477.	3.3	378
177	Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography, 2003, 12, 93-102.	2.7	136
178	RESOURCE-DEPENDENT INTERACTIONS AND THE ORGANIZATION OF DESERT ANT COMMUNITIES. Ecology, 2003, 84, 1024-1031.	1.5	82
179	Biological Invaders in a Greenhouse World: Will Elevated CO 2 Fuel Plant Invasions?. Frontiers in Ecology and the Environment, 2003, 1, 146.	1.9	53
180	The Effects of Proximity and Colony Age on Interspecific Interference Competition between the Desert Ants Pogonomyrmex barbatus and Aphaenogaster cockerelli. American Midland Naturalist, 2002, 148, 376.	0.2	8

#	Article	IF	CITATIONS
181	Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 2002, 25, 25-32.	2.1	284
182	Long-term dynamics of the distribution of the invasive Argentine ant, Linepithema humile, and native ant taxa in northern California. Oecologia, 2001, 127, 123-130.	0.9	71
183	The effects of interspecific interactions on resource use and behavior in a desert ant. Oecologia, 2000, 125, 436-443.	0.9	44