
Fedorov Ruslan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5840770/publications.pdf Version: 2024-02-01

FEDOROV RUSIAN

#	Article	IF	CITATIONS
1	A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry. Journal of Mathematical Chemistry, 2022, 60, 475-501.	1.5	6
2	Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method. Mathematics, 2022, 10, 511.	2.2	1
3	Mathematical modeling of exchange processes in a turbulent boundary layer, research and verification of the model. AIP Conference Proceedings, 2022, , .	0.4	Ο
4	On a New Family of Runge–Kutta–Nyström Pairs of Orders 6(4). Mathematics, 2022, 10, 875.	2.2	8
5	Zeroing Neural Network for Pseudoinversion of an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition. Mathematics, 2022, 10, 1208.	2.2	17
6	Applying the Random Forest Method to Improve Burner Efficiency. Mathematics, 2022, 10, 2143.	2.2	8
7	Real-Time Estimation of R0 for COVID-19 Spread. Mathematics, 2021, 9, 664.	2.2	13
8	A Neural Network Technique for the Derivation of Runge–Kutta Pairs Adjusted for Scalar Autonomous Problems. Mathematics, 2021, 9, 1842.	2.2	8
9	Runge–Kutta Pairs of Orders 5(4) Trained to Best Address Keplerian Type Orbits. Mathematics, 2021, 9, 2400.	2.2	7
10	Evolutionary Derivation of Runge–Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions. Mathematics, 2021, 9, 2306.	2.2	10
11	Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions. Mathematics, 2021, 9, 2756.	2.2	5
12	Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits. Mathematics, 2021, 9, 3071.	2.2	6
13	Numerical Solution to Anomalous Diffusion Equations for Levy Walks. Mathematics, 2021, 9, 3219.	2.2	2
14	To mathematical modeling of temperature stratification impact on atmospheric conditions changes. AIP Conference Proceedings, 2020, , .	0.4	0
15	Mathematical modeling of turbulent transfer in thermal boundary layer at the influence of hemispherical damping cavities. AIP Conference Proceedings, 2020, , .	0.4	0
16	Mathematical modeling and numerical research of heat transfer in heterogeneous flows. AIP Conference Proceedings, 2019, , .	0.4	0
17	Modeling and numerical technique for investigating of turbulent transfer in a non-stationary boundary layer at impacts. AIP Conference Proceedings, 2019, , .	0.4	1
18	Mathematical modeling and research of heat-and-mass transfer of moisture and gas in the capillary-porous space of solid biofuel elements. AIP Conference Proceedings, 2019, , .	0.4	3

FEDOROV RUSLAN

#	Article	IF	CITATIONS
19	Numerical research of perspective technical solutions for thermal protection of surfaces flowed by high-speed dispersed flows. AIP Conference Proceedings, 2019, , .	0.4	0
20	New multiple stages scheme with improved properties for second order problems. Journal of Mathematical Chemistry, 2019, 57, 232-262.	1.5	6
21	A four stages numerical pair with optimal phase and stability properties. Journal of Mathematical Chemistry, 2018, 56, 81-102.	1.5	27
22	Mathematical simulation of technology of enrichment of low-grade solid fuels by recirculated exhaust gases for boiler plants. AIP Conference Proceedings, 2018, , .	0.4	0
23	Modeling and investigation of the intensification of fluid diffusion in the capillary-porous space by applying periodic pressure pulsations. AIP Conference Proceedings, 2018, , .	0.4	0
24	Technology of designing energy efficient power converters on the basis of programmable field models. AIP Conference Proceedings, 2018, , .	0.4	0
25	Features of the research of the efficiency of thermal protection of complex-profile surfaces streamlined by high-speed disperse flow. AIP Conference Proceedings, 2018, , .	0.4	0
26	Mathematical modeling of convective heat transfer and friction of a plate at harmonic pressure oscillations of a homogeneous flow. AIP Conference Proceedings, 2018, , .	0.4	0
27	Development and study of technical solutions for turbine blades cooling. AIP Conference Proceedings, 2018, , .	0.4	0
28	New hybrid two-step method with optimized phase and stability characteristics. Journal of Mathematical Chemistry, 2018, 56, 2302-2340.	1.5	18
29	New hybrid symmetric two step scheme with optimized characteristics for second order problems. Journal of Mathematical Chemistry, 2018, 56, 2816-2844.	1.5	14
30	Method of calculation of a thermolysis and friction of a turbulent disperse flow in nozzles. AIP Conference Proceedings, 2017, , .	0.4	2
31	The mechanism and theoretical basis of the management of intensity of the heat transfer control through periodic influences on the turbulent boundary layer. AIP Conference Proceedings, 2017, , .	0.4	3
32	Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis. AIP Conference Proceedings, 2017, , .	0.4	5
33	The modeling of influence of the external turbulence over the heat transfer towards the surface of turbomachinery blades. AIP Conference Proceedings, 2017, , .	0.4	2
34	Technical solutions for increasing efficiency of gas turbine engines. , 2017, , .		0
35	Mechanisms and models of control of turbulent transfer in boundary layer. , 2017, , .		0
36	Modeling and research of thermal aspects of precision holes drilling quality assurance. AIP Conference Proceedings, 2016, , .	0.4	0

FEDOROV RUSLAN

#	Article	IF	CITATIONS
37	Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conference Proceedings, 2016, , .	0.4	64
38	Development and research of technologies of thermal protection of surfaces streamlined by disperse working media. Modern Science Researches Ideas Results Technologies, 2016, , 68-77.	0.2	0
39	Numerical analysis of the efficiency of film cooling of surface streamlined by supersonic disperse flow. AIP Conference Proceedings, 2015, , .	0.4	20
40	Modeling, research and development the technology of cooling of turbine engine blades. AIP Conference Proceedings, 2015, , .	0.4	6
41	Numerical analysis of the temperature stratification of the disperse flow. AIP Conference Proceedings, 2015, , .	0.4	76
42	Modeling and Development of Cooling Technology of Turbine Engine Blades. International Review of Mechanical Engineering, 2015, 9, 331.	0.2	55