
Alexander Burashnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5840376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atrial Fibrillation Induced by Anticancer Drugs and Underling Mechanisms. Journal of Cardiovascular Pharmacology, 2022, 80, 540-546.	1.9	4
2	Depolarization of the atrial resting membrane potential as an approach to enhance the anti–atrial fibrillation efficacy of sodium channel blockers. Heart Rhythm, 2021, 18, 1221-1222.	0.7	2
3	Intracellular uptake of agents that block the hERG channel can confound the assessment of QT interval prolongation and arrhythmic risk. Heart Rhythm, 2021, 18, 2177-2186.	0.7	2
4	Investigational Anti–Atrial Fibrillation Pharmacology and Mechanisms by Which Antiarrhythmics Terminate the Arrhythmia: Where Are We in 2020?. Journal of Cardiovascular Pharmacology, 2020, 76, 492-505.	1.9	7
5	The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2020, 76, 164-172.	1.9	10
6	Acacetin suppresses the electrocardiographic and arrhythmic manifestations of the J wave syndromes. PLoS ONE, 2020, 15, e0242747.	2.5	20
7	Mechanisms Underlying the Development of Cardiac Arrhythmias. Contemporary Cardiology, 2020, , 33-74.	0.1	0
8	ls extensive atrial fibrosis in the setting of heart failure associated with a reduced atrial fibrillation burden?. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 1289-1297.	1.2	6
9	Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. International Journal of Cardiology, 2016, 207, 326-334.	1.7	23
10	Atria are More Sensitive Than Ventricles to GS-458967-Induced Inhibition of Late Sodium Current. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 501-508.	2.0	17
11	Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation. Heart Rhythm, 2015, 12, 836-844.	0.7	15
12	A temporal window of vulnerability for development of atrial fibrillation with advancing heart failure. European Journal of Heart Failure, 2014, 16, 271-280.	7.1	15
13	Role of Late Sodium Channel Current Block in the Management of Atrial Fibrillation. Cardiovascular Drugs and Therapy, 2013, 27, 79-89.	2.6	46
14	Atrial-Selective Sodium Channel Block Strategy to Suppress Atrial Fibrillation: Ranolazine versus Propafenone. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 161-168.	2.5	49
15	Rate-Dependent Effects of Vernakalant in the Isolated Non-Remodeled Canine Left Atria Are Primarily Due to Block of the Sodium Channel. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 400-408.	4.8	46
16	Atrial-selective Prolongation of Refractory Period With AVE0118 is Due Principally to Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2012, 59, 539-546.	1.9	21
17	Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Heart Rhythm, 2012, 9, 125-131.	0.7	75
18	Advances in the Pharmacologic Management of Atrial Fibrillation. Cardiac Electrophysiology Clinics, 2011, 3, 157-167.	1.7	0

#	Article	IF	CITATIONS
19	Novel pharmacological targets for the rhythm control management of atrial fibrillation. , 2011, 132, 300-313.		29
20	Ranolazine versus amiodarone for prevention of postoperative atrial fibrillation. Future Cardiology, 2011, 7, 733-737.	1.2	6
21	AZD1305 Exerts Atrial Predominant Electrophysiological Actions and Is Effective in Suppressing Atrial Fibrillation and Preventing Its Reinduction in the Dog. Journal of Cardiovascular Pharmacology, 2010, 56, 80-90.	1.9	25
22	New developments in atrial antiarrhythmic drug therapy. Nature Reviews Cardiology, 2010, 7, 139-148.	13.7	61
23	Synergistic Effect of the Combination of Ranolazine and Dronedarone to Suppress Atrial Fibrillation. Journal of the American College of Cardiology, 2010, 56, 1216-1224.	2.8	123
24	Acute dronedarone is inferior to amiodarone in terminating and preventing atrial fibrillation in canine atria. Heart Rhythm, 2010, 7, 1273-1279.	0.7	29
25	Advances in the Pharmacological Treatment of Atrial Fibrillation. Current Medical Literature Cardiology, 2010, 29, 1-5.	0.0	0
26	<i>Atrialâ€Selective Sodium Channel Block as a Strategy for Suppression of Atrial Fibrillation</i> . Annals of the New York Academy of Sciences, 2008, 1123, 105-112.	3.8	53
27	Atrial-selective effects of chronic amiodarone in the management of atrial fibrillation. Heart Rhythm, 2008, 5, 1735-1742.	0.7	63
28	Can inhibition of IKur promote atrial fibrillation?. Heart Rhythm, 2008, 5, 1304-1309.	0.7	48
29	Fever Accentuates Transmural Dispersion of Repolarization and Facilitates Development of Early Afterdepolarizations and Torsade de Pointes Under Long-QT Conditions. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 202-208.	4.8	40
30	Atrial-Selective Sodium Channel Blockers: Do They Exist?. Journal of Cardiovascular Pharmacology, 2008, 52, 121-128.	1.9	46
31	How Do Atrial-Selective Drugs Differ From Antiarrhythmic Drugs Currently Used in the Treatment of Atrial Fibrillation, 2008, 1, 98-107.	0.5	15
32	Atrium-Selective Sodium Channel Block as a Strategy for Suppression of Atrial Fibrillation. Circulation, 2007, 116, 1449-1457.	1.6	390
33	Late-Phase 3 EAD. A Unique Mechanism Contributing to Initiation of Atrial Fibrillation. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 290-295.	1.2	117
34	Role of Repolarization Restitution in the Development of Coarse and Fine Atrial Fibrillation in the Isolated Canine Right Atria. Journal of Cardiovascular Electrophysiology, 2005, 16, 639-645.	1.7	12
35	Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of IKr and IKur/Ito block. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2393-H2400.	3.2	63
36	Reinduction of Atrial Fibrillation Immediately After Termination of the Arrhythmia Is Mediated by Late Phase 3 Early Afterdepolarization–Induced Triggered Activity. Circulation, 2003, 107, 2355-2360.	1.6	291

#	Article	IF	CITATIONS
37	Prominent IKs in Epicardium and Endocardium Contributes to Development of Transmural Dispersion of Repolarization but Protects Against Development of Early Afterdepolarizations. Journal of Cardiovascular Electrophysiology, 2002, 13, 172-177.	1.7	52
38	Differences in the electrophysiologic response of four canine ventricular cell types to α1-adrenergic agonists. Cardiovascular Research, 1999, 43, 901-908.	3.8	28
39	The M Cell: Journal of Cardiovascular Electrophysiology, 1999, 10, 1124-1152.	1.7	525