Margaret Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5840138/publications.pdf

Version: 2024-02-01

239 papers 10,704 citations

³⁸⁷⁴² 50 h-index

93 g-index

246 all docs

246 docs citations

times ranked

246

11512 citing authors

#	Article	IF	CITATIONS
1	Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 2012, 21, 393-404.	5.8	786
2	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
3	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 2011, 4, 709-725.	3.1	661
4	Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 2008, 17, 4398-4417.	3.9	580
5	Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 2011, 38, 1635-1656.	3.0	324
6	Genetic Diversity and Conservation Units: Dealing With the Species-Population Continuum in the Age of Genomics. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	266
7	Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 2008, 27, 2576-2585.	3.0	253
8	Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	233
9	Biological invasions, climate change and genomics. Evolutionary Applications, 2015, 8, 23-46.	3.1	209
10	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 2016, 5, 21.	6.4	204
11	Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. Plant Methods, 2020, 16, 1.	4.3	197
12	A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, 2015, 2, .	2.6	175
13	Reproductive biology of Australian acacias: important mediator of invasiveness?. Diversity and Distributions, 2011, 17, 911-933.	4.1	148
14	The potential of genomics for restoring ecosystems and biodiversity. Nature Reviews Genetics, 2019, 20, 615-628.	16.3	142
15	Conservation and Genetic Diversity of Microsatellite loci in the Genus Eucalyptus. Australian Journal of Botany, 1996, 44, 331.	0.6	124
16	Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biological Conservation, 2013, 157, 172-177.	4.1	118
17	Biogeography and speciation of terrestrial fauna in the southâ€western Australian biodiversity hotspot. Biological Reviews, 2015, 90, 762-793.	10.4	107
18	Plasticity of functional traits varies clinally along a rainfall gradient in <i>Eucalyptus tricarpa</i> Plant, Cell and Environment, 2014, 37, 1440-1451.	5.7	106

#	Article	IF	Citations
19	Bridging the gap: a genetic assessment framework for populationâ€level threatened plant conservation prioritization and decisionâ€making. Diversity and Distributions, 2016, 22, 174-188.	4.1	105
20	Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 2019, 44, 3-27.	1.5	105
21	Assessing genetic risk in revegetation. Journal of Applied Ecology, 2011, 48, 1365-1373.	4.0	97
22	Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia. Biological Journal of the Linnean Society, 2007, 93, 177-188.	1.6	96
23	Genomeâ€wide scans detect adaptation to aridity in a widespread forest tree species. Molecular Ecology, 2014, 23, 2500-2513.	3.9	95
24	Extensive pollen dispersal in a bird-pollinated shrub, Calothamnus quadrifidus, in a fragmented landscape. Molecular Ecology, 2007, 16, 1303-1314.	3.9	91
25	Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world's largest Mediterranean-climate woodland. Climatic Change, 2012, 110, 227-248.	3.6	89
26	Restriction Map and Maternal Inheritance of Chloroplast DNA in Eucalyptus nitens. Journal of Heredity, 1993, 84, 218-220.	2.4	88
27	An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theoretical and Applied Genetics, 1995, 91-91, 869-875.	3.6	83
28	Threatened plant translocation in Australia: A review. Biological Conservation, 2019, 236, 211-222.	4.1	83
29	Population divergence in the chloroplast genome of Eucalyptus nitens. Heredity, 1994, 73, 18-28.	2.6	80
30	Maintenance of high pollen dispersal in Eucalyptus wandoo, a dominant tree of the fragmented agricultural region in Western Australia. Conservation Genetics, 2008, 9, 97-105.	1.5	80
31	Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Diversity and Distributions, 2011, 17, 861-871.	4.1	79
32	Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theoretical and Applied Genetics, 1997, 94, 674-681.	3.6	77
33	A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theoretical and Applied Genetics, 2002, 104, 379-387.	3.6	77
34	Evaluating the influence of different aspects of habitat fragmentation on mating patterns and pollen dispersal in the birdâ€pollinated ⟨i⟩Banksia sphaerocarpa⟨/i⟩ var. ⟨i⟩caesia⟨/i⟩. Molecular Ecology, 2012, 21, 314-328.	3.9	76
35	Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biological Journal of the Linnean Society, 2012, 105, 218-230.	1.6	73
36	Phylodiversity to inform conservation policy: An Australian example. Science of the Total Environment, 2015, 534, 131-143.	8.0	72

#	Article	IF	Citations
37	Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution, 2020, 10, 232-248.	1.9	71
38	Phylogeographical patterns in chloroplast DNA variation within the Acacia acuminata (Leguminosae:) Tj ETQq0 0	O rgBT /C)verlock 10 Tf
39	Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theoretical and Applied Genetics, 1997, 95, 975-979.	3.6	65
40	Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biological Conservation, 2014, 171, 209-219.	4.1	64
41	Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Australian Journal of Botany, 2007, 55, 316.	0.6	63
42	Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Australian Systematic Botany, 1998 , 11 , 25 .	0.9	60
43	Incorporation of Sodium Sulfite into Extraction Protocol Minimizes Degradation of <i>Acacia</i> DNA. BioTechniques, 2001, 30, 742-748.	1.8	57
44	Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae). Australian Journal of Botany, 2004, 52, 459.	0.6	57
45	Outcrossing between an agroforestry plantation and remnant native populations of <i>Eucalyptus loxophleba</i> . Molecular Ecology, 2008, 17, 2769-2781.	3.9	56
46	Genetic diversity and structure of the Australian flora. Diversity and Distributions, 2017, 23, 41-52.	4.1	56
47	Rapid Characterisation of Vegetation Structure to Predict Refugia and Climate Change Impacts across a Global Biodiversity Hotspot. PLoS ONE, 2014, 9, e82778.	2.5	56
48	Advancing DNA Barcoding and Metabarcoding Applications for Plants Requires Systematic Analysis of Herbarium Collections—An Australian Perspective. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	55
49	Isolated with persistence or dynamically connected? Genetic patterns in a common granite outcrop endemic. Diversity and Distributions, 2014, 20, 987-1001.	4.1	54
50	Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. ELife, $2018, 7, .$	6.0	54
51	Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step. Global Ecology and Conservation, 2018, 13, e00363.	2.1	52
52	Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for longâ€distance dispersal. Diversity and Distributions, 2019, 25, 298-309.	4.1	52
53	Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum). Heredity, 2003, 91, 389-395.	2.6	51
54	Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Molecular Ecology, 2019, 28, 2502-2516.	3.9	50

#	Article	IF	CITATIONS
55	Seed production, germinability and seedling growth for a bird-pollinated shrub in fragments of kwongan in south-west Australia. Biological Conservation, 2007, 136, 306-314.	4.1	48
56	Phylogeography and conservation of three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes. Australian Journal of Botany, 2000, 48, 305.	0.6	45
57	Testing the variability of chloroplast sequences for plant phylogeography. Australian Journal of Botany, 2012, 60, 569.	0.6	45
58	Divergence in the chloroplast genome and nuclear rDNA of the rare Western Australian plant Lambertia orbifolia Gardner (Proteaceae). Molecular Ecology, 1999, 8, 1789-1796.	3.9	44
59	Prolonged isolation and persistence of a common endemic on granite outcrops in both mesic and semiâ€arid environments in southâ€western Australia. Journal of Biogeography, 2014, 41, 2032-2044.	3.0	43
60	Title is missing!. Conservation Genetics, 2001, 2, 157-166.	1.5	42
61	Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis. Theoretical and Applied Genetics, 2003, 107, 1208-1214.	3.6	41
62	Congruence between phylogeographic patterns in cpDNA variation in Eucalyptus marginata (Myrtaceae) and geomorphology of the Darling Plateau, south-west of Western Australia. Australian Journal of Botany, 2006, 54, 17.	0.6	40
63	Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiology, 2017, 37, 1095-1112.	3.1	40
64	Transdisciplinary synthesis for ecosystem science, policy and management: The Australian experience. Science of the Total Environment, 2015, 534, 173-184.	8.0	39
65	Composition of the pollinator community, pollination and the mating system for a shrub in fragments of species rich kwongan in south-west Western Australia. Biodiversity and Conservation, 2007, 16, 1379-1395.	2.6	37
66	The maintenance of disparate levels of clonality, genetic diversity and genetic differentiation in disjunct subspecies of the rare Banksia ionthocarpa. Molecular Ecology, 2010, 19, 4217-4227.	3.9	37
67	Climate adaptation and ecological restoration in eucalypts. Proceedings of the Royal Society of Victoria, 2016, 128, 40.	0.4	37
68	A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. Annals of Botany, 2017, 119, 289-300.	2.9	37
69	High genetic identities between three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes, based on nuclear RFLP analysis. Heredity, 1999, 82, 205-211.	2.6	36
70	High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites. Tree Genetics and Genomes, 2008, 4, 367-377.	1.6	35
71	Realâ€world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conservation Letters, 2018, 11, e12438.	5.7	35
72	Cultivation shapes genetic novelty in a globally important invader. Molecular Ecology, 2012, 21, 3187-3199.	3.9	34

#	Article	IF	CITATIONS
73	Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt. Tree Genetics and Genomes, 2015, 11, 1.	1.6	34
74	High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecology and Evolution, 2019, 9, 7660-7675.	1.9	34
75	Is Australia ready for assisted colonization? Policy changes required to facilitate translocations under climate change Pacific Conservation Biology, 2011, 17, 259.	1.0	33
76	Genetic diversity in the cycad Macrozamia riedlei. Heredity, 1991, 67, 35-39.	2.6	32
77	Defining entities in the Acacia saligna (Fabaceae) species complex using a population genetics approach. Australian Journal of Botany, 2011, 59, 137.	0.6	32
78	Genetic connectivity and diversity in inselberg populations of Acacia woodmaniorum, a rare endemic of the Yilgarn Craton banded iron formations. Heredity, 2013, 111, 437-444.	2.6	32
79	Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic. Annals of Botany, 2014, 114, 961-971.	2.9	32
80	Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biological Journal of the Linnean Society, 2017, 121, 484-500.	1.6	32
81	Contrasting Influences of Geographic Range and Distribution of Populations on Patterns of Genetic Diversity in Two Sympatric Pilbara Acacias. PLoS ONE, 2016, 11, e0163995.	2.5	32
82	Mating system studies in jarrah, Eucalyptus marginata (Myrtaceae). Australian Journal of Botany, 2000, 48, 475.	0.6	30
83	An environmental weed risk assessment model for Australian forage improvement programs. Australian Journal of Experimental Agriculture, 2008, 48, 568.	1.0	30
84	Contemporary pollen-mediated gene immigration reflects the historical isolation of a rare, animal-pollinated shrub in a fragmented landscape. Heredity, 2014, 112, 172-181.	2.6	30
85	Genetic drift drives evolution in the bird-pollinated, terrestrial island endemic <i>G</i> ci>revillea georgeana (Proteaceae). Botanical Journal of the Linnean Society, 2015, 178, 155-168.	1.6	30
86	Genetic differentiation between mallee and tree forms in the Eucalyptus loxophleba complex. Heredity, 2001, 87, 566-572.	2.6	29
87	Evidence for convergent evolution among phylogenetically distant rare species of Tetratheca (Elaeocarpaceae, formerly Tremandraceae) from Western Australia. Australian Systematic Botany, 2007, 20, 126.	0.9	29
88	High Levels of Genetic Contamination in Remnant Populations of <i>Acacia saligna</i> from a Genetically Divergent Planted Stand. Restoration Ecology, 2012, 20, 260-267.	2.9	29
89	Phylogeographic evidence for two mesic refugia in a biodiversity hotspot. Heredity, 2014, 113, 454-463.	2.6	29
90	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	1.9	29

#	Article	IF	Citations
91	Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region. Plant Diversity, 2019, 41, 59-74.	3.7	29
92	Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biology and Evolution, 2017, 9, 253-265.	2.5	27
93	The need for †duty of care' when introducing new crops for sustainable agriculture. Current Opinion in Environmental Sustainability, 2011, 3, 50-54.	6.3	25
94	Contrasting patterns of clonality and fine-scale genetic structure in two rare sedges with differing geographic distributions. Heredity, 2015, 115, 235-242.	2.6	25
95	Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs. Biological Reviews, 2019, 94, 753-772.	10.4	25
96	Refining expectations for environmental characteristics of refugia: two ranges of differing elevation and topographical complexity are mesic refugia in an arid landscape. Journal of Biogeography, 2017, 44, 2539-2550.	3.0	24
97	Significant genetic diversity loss following pathogen driven population extinction in the rare endemic Banksia brownii (Proteaceae). Biological Conservation, 2015, 192, 353-360.	4.1	23
98	Variation within and among the chloroplast genomes of Melaleuca alternifolia and M. linariifolia (Myrtaceae). Plant Systematics and Evolution, 1995, 194, 69-81.	0.9	22
99	A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling. Annals of Botany, 2015, 116, 941-952.	2.9	22
100	Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Molecular Ecology Notes, 2005, 5, 57-59.	1.7	21
101	Complex interactions between remnant shape and the mating system strongly influence reproductive output and progeny performance in fragmented populations of a bird-pollinated shrub. Biological Conservation, 2013, 164, 129-139.	4.1	21
102	Long-term †islands†in the landscape: low gene flow, effective population size and genetic divergence in the shrub <i>Hakea oldfieldii</i> <(Proteaceae). Botanical Journal of the Linnean Society, 2015, 179, 319-334.	1.6	21
103	Not all rare species are the same: contrasting patterns of genetic diversity and population structure in two narrow-range endemic sedges. Biological Journal of the Linnean Society, 2015, 114, 873-886.	1.6	21
104	Population Genomics of Bettongia lesueur: Admixing Increases Genetic Diversity with no Evidence of Outbreeding Depression. Genes, 2019, 10, 851.	2.4	21
105	Adaptive variation for growth and resistance to a novel pathogen along climatic gradients in a foundation tree. Evolutionary Applications, 2019, 12, 1178-1190.	3.1	20
106	Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae). Australian Journal of Botany, 2004, 52, 729.	0.6	20
107	Cryptic divergent lineages ofPultenaea paucifloraM.B. Scott (Fabaceae: Mirbelieae) exhibit different evolutionary history. Biological Journal of the Linnean Society, 2013, 108, 871-881.	1.6	19
108	Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. New Phytologist, 2021, 232, 1212-1225.	7.3	19

#	Article	IF	Citations
109	Phylogeography and population differentiation in terrestrial island populations of <i>B</i> arborea(Proteaceae). Biological Journal of the Linnean Society, 2015, 114, 860-872.	1.6	18
110	A Climate-Oriented Approach to Support Decision-Making for Seed Provenance in Ecological Restoration. Frontiers in Ecology and Evolution, 0, 5, .	2.2	18
111	Persistence with episodic range expansion from the early Pleistocene: the distribution of genetic variation in the forest tree Corymbia calophylla (Myrtaceae) in south-western Australia. Biological Journal of the Linnean Society, 2018, 123, 545-560.	1.6	18
112	Pollen adaptation to ant pollination: a case study from the Proteaceae. Annals of Botany, 2020, 126, 377-386.	2.9	18
113	Characterization of polymorphic microsatellite DNA markers for Acacia saligna (Labill.) H.L.Wendl. (Mimosaceae). Molecular Ecology Notes, 2007, 7, 1372-1374.	1.7	17
114	Clonality and hybrid origin of the rare Eucalyptus bennettiae (Myrtaceae) in Western Australia. Australian Journal of Botany, 2009, 57, 180.	0.6	17
115	Foundations for the future: A longâ€term plan for <scp>A</scp> ustralian ecosystem science. Austral Ecology, 2014, 39, 739-748.	1.5	17
116	Disjunct, highly divergent genetic lineages within two rareEremophila(Scrophulariaceae: Myoporeae) species in a biodiversity hotspot: implications for taxonomy and conservation. Botanical Journal of the Linnean Society, 2015, 177, 96-111.	1.6	17
117	Clonality, interspecific hybridisation and inbreeding in a rare mallee eucalypt, Eucalyptus absita (Myrtaceae), and implications for conservation. Conservation Genetics, 2016, 17, 193-205.	1.5	17
118	Consistent sorting but contrasting transition zones in plant communities along bioclimatic gradients. Acta Oecologica, 2019, 95, 74-85.	1.1	17
119	A review of applications of environmental DNA for reptile conservation and management. Ecology and Evolution, 2022, 12, .	1.9	17
120	Significant population genetic structure detected for a new and highly restricted species of Atriplex (Chenopodiaceae) from Western Australia, and implications for conservation management. Australian Journal of Botany, 2012, 60, 32.	0.6	16
121	Does population distribution matter? Influence of a patchy versus continuous distribution on genetic patterns in a windâ€pollinated shrub. Journal of Biogeography, 2017, 44, 361-374.	3.0	16
122	Detection and inheritance of RFLPs in Eucalyptus nitens. Theoretical and Applied Genetics, 1994, 89, 397-402.	3.6	15
123	Phylogenetics and the conservation of rare taxa in the Eucalyptus angustissima complex in Western Australia. Conservation Genetics, 2004, 5, 39-47.	1.5	15
124	Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecology and Evolution, 2016, 6, 5867-5880.	1.9	15
125	When macroecological transitions are a fiction of sampling: comparing herbarium records to plotâ€based species inventory data. Ecography, 2018, 41, 1864-1875.	4.5	15
126	The Oz Mammals Genomics (OMG) initiative: developing genomic resources for mammal conservation at a continental scale. Australian Zoologist, 2020, 40, 505-509.	1.1	15

#	Article	IF	CITATIONS
127	Phylogenetics and the conservation of a diverse and ancient flora. Comptes Rendus - Biologies, 2003, 326, 73-79.	0.2	14
128	Genetic differentiation among morphological variants of Acacia saligna (Mimosaceae). Tree Genetics and Genomes, 2006, 2, 109-119.	1.6	14
129	A rapid PCR-based diagnostic test for the identification of subspecies of Acacia saligna. Tree Genetics and Genomes, 2008, 4, 625-635.	1.6	14
130	The importance of recruitment patterns versus reproductive output in the persistence of a short-range endemic shrub in a highly fragmented landscape of south-western Australia. Australian Journal of Botany, 2012, 60, 643.	0.6	14
131	Resolving Generic Boundaries in Indianâ€Australasian Cleomaceae: Circumscription of <i>Areocleome</i> , <i>Arivela</i> , and <i>Corynandra</i> as Distinct Genera. Systematic Botany, 2017, 42, 694-708.	0.5	14
132	Evolutionary History., 2018,, 45-75.		14
133	Conservation genomics of range disjunction in a global biodiversity hotspot: a case study of Banksia biterax (Proteaceae) in southwestern Australia. Biological Journal of the Linnean Society, 2019, 127, 390-406.	1.6	14
134	Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts. Molecular Phylogenetics and Evolution, 2019, 135, 236-248.	2.7	14
135	Regarding the Fâ€word: The effects of data filtering on inferred genotypeâ€environment associations. Molecular Ecology Resources, 2021, 21, 1460-1474.	4.8	14
136	Contrasting diversity and demographic signals in sympatric narrow-range endemic shrubs of the south-west Western Australian semi-arid zone. Biological Journal of the Linnean Society, 2016, 118, 315-329.	1.6	13
137	The role of fire and a longâ€lived soil seed bank in maintaining persistence, genetic diversity and connectivity in a fireâ€prone landscape. Journal of Biogeography, 2016, 43, 70-84.	3.0	13
138	Assessment of genetic diversity and mating system of Acacia cyclops restoration and remnant populations. Restoration Ecology, 2019, 27, 1327-1338.	2.9	13
139	Genetic monitoring of the greater stick-nest rat meta-population for strategic supplementation planning. Conservation Genetics, 2020, 21, 941-956.	1.5	13
140	Genetic diversity and the utilisation of Acacia species complexes in agroforestry in Western Australia. Australian Systematic Botany, 2003, 16, 49.	0.9	12
141	Whose backyard? Some precautions in choosing recipient sites for assisted colonisation of <scp>A</scp> ustralian plants and animals. Ecological Management and Restoration, 2013, 14, 106-111.	1.5	12
142	Phylogeography of southern brown and golden bandicoots: implications for the taxonomy and distribution of endangered subspecies and species. Australian Journal of Zoology, 2018, 66, 379.	1.0	12
143	Connectivity in riparian plants: influence of vegetation type and habitat fragmentation overrides water flow. Oecologia, 2018, 188, 465-478.	2.0	12
144	Gene Flow and Genetic Variation Explain Signatures of Selection across a Climate Gradient in Two Riparian Species. Genes, 2019, 10, 579.	2.4	12

#	Article	IF	Citations
145	Predicting contemporary rangeâ€wide genomic variation using climatic, phylogeographic and morphological knowledge in an ancient, unglaciated landscape. Journal of Biogeography, 2019, 46, 503-514.	3.0	12
146	The origins and evolutionary history of xerophytic vegetation in Australia. Australian Journal of Botany, 2020, 68, 195.	0.6	12
147	Assessing genetic structure in a rare clonal eucalypt as a basis for augmentation and introduction translocations. Conservation Genetics, 2016, 17, 293-304.	1.5	11
148	Habitat fragmentation restricts insect pollinators and pollen quality in a threatened Proteaceae species. Biological Conservation, 2020, 252, 108824.	4.1	11
149	Platysace (Apiaceae) of south-western Australia: silent story tellers of an ancient human landscape. Biological Journal of the Linnean Society, 2020, 130, 61-78.	1.6	11
150	Genetic Diversity of an Australian Santalum album Collection – Implications For Tree Improvement Potential. Silvae Genetica, 2009, 58, 279-286.	0.8	10
151	A rare, new species of Atriplex (Chenopodiaceae) comprising two genetically distinct but morphologically cryptic populations in arid Western Australia: implications for taxonomy and conservation. Australian Systematic Botany, 2015, 28, 234.	0.9	10
152	How does the postâ€fire facultative seeding strategy impact genetic variation and phylogeographical history? The case of <i>Bossiaea ornata</i> (Fabaceae) in a fireâ€prone, mediterraneanâ€climate ecosystem. Journal of Biogeography, 2016, 43, 96-110.	3.0	10
153	Altered Soil Properties Inhibit Fruit Set but Increase Progeny Performance for a Foundation Tree in a Highly Fragmented Landscape. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	10
154	Contrasting patterns of local adaptation along climatic gradients between a sympatric parasitic and autotrophic tree species. Molecular Ecology, 2020, 29, 3022-3037.	3.9	10
155	Genomic divergence in sympatry indicates strong reproductive barriers and cryptic species within <i>Eucalyptus salubris </i> i>. Ecology and Evolution, 2021, 11, 5096-5110.	1.9	10
156	Strong Phylogeographic Structure in a Millipede Indicates Pleistocene Vicariance between Populations on Banded Iron Formations in Semi-Arid Australia. PLoS ONE, 2014, 9, e93038.	2.5	10
157	High Levels of Outcrossing in a Family Trial of Western Australian Sandalwood (Santalum spicatum). Silvae Genetica, 2007, 56, 222-230.	0.8	10
158	Taxonomic revision of the broombush complex in Western Australia (Myrtaceae, Melaleuca uncinata) Tj ETQq0 0	O rgBT /O	veglock 10 Ti
159	Microsatellite markers isolated from a polyploid saltbush, Atriplex nummularia Lindl. (Chenopodiaceae). Molecular Ecology Resources, 2008, 8, 1426-1428.	4.8	9
160	Morphological and molecular evidence supports the recognition of a new subspecies of the critically endangered Pityrodia scabra (Lamiaceae). Australian Systematic Botany, 2013, 26, 1.	0.9	9
161	A cryptic genetic boundary in remnant populations of a long-lived, bird-pollinated shrubBanksia sphaerocarpavar.caesia(Proteaceae). Biological Journal of the Linnean Society, 2015, 115, 241-255.	1.6	9
162	High nuclear genetic differentiation, but low chloroplast diversity in a rare species, Aluta quadrata (Myrtaceae), with a disjunct distribution in the Pilbara, Western Australia. Australian Journal of Botany, 2016, 64, 687.	0.6	9

#	Article	IF	Citations
163	Women in conservation science making a difference. Pacific Conservation Biology, 2018, 24, 209.	1.0	9
164	Genetic and environmental parameters show associations with essential oil composition in West Australian sandalwood (Santalum spicatum). Australian Journal of Botany, 2018, 66, 48.	0.6	9
165	Remnant vegetation provides genetic connectivity for a critical weight range mammal in a rapidly urbanising landscape. Landscape and Urban Planning, 2019, 190, 103587.	7. 5	9
166	Floral display and habitat fragmentation: Effects on the reproductive success of the threatened massâ€flowering <i>Conospermum undulatum</i> (Proteaceae). Ecology and Evolution, 2019, 9, 11494-11503.	1.9	9
167	Genomic data inform conservation of rare tree species: clonality, diversity and hybridity in Eucalyptus series in a global biodiversity hotspot. Biodiversity and Conservation, 2021, 30, 619-641.	2.6	9
168	Genetic and mating system assessment of translocation success of the longâ€lived perennial shrub ⟨i⟩Lambertia orbifolia⟨ i⟩ (Proteaceae). Restoration Ecology, 2021, 29, e13369.	2.9	9
169	Isolation and characterization of microsatellites in the woody shrub, Calothamnus quadrifidus (Myrtaceae). Molecular Ecology Notes, 2005, 5, 757-759.	1.7	8
170	Biogeographic origins and reproductive mode of naturalised populations of Acacia saligna. Australian Journal of Botany, 2012, 60, 383.	0.6	8
171	Characterisation of eleven polymorphic microsatellite DNA markers for Australian sandalwood (Santalum spicatum) (R.Br.) A.DC. (Santalaceae). Conservation Genetics Resources, 2012, 4, 51-53.	0.8	8
172	Isolation, characterization, and crossâ€amplification of 20 microsatellite markers for <i>Conospermum undulatum</i> (Proteaceae). Applications in Plant Sciences, 2019, 7, e11283.	2.1	8
173	Limited influence of landscape on the genetic structure of three small mammals in a heterogeneous arid environment. Journal of Biogeography, 2019, 46, 539-551.	3.0	8
174	Variable clonality and genetic structure among disjunct populations of Banksia mimica. Conservation Genetics, 2020, 21, 803-818.	1.5	8
175	Development and optimisation of molecular assays for microsatellite genotyping and molecular sexing of non-invasive samples of the ghost bat, Macroderma gigas. Molecular Biology Reports, 2020, 47, 5635-5641.	2.3	8
176	Nuclear RFLP diversity in Eucalyptus nitens. Heredity, 1998, 81, 225-233.	2.6	8
177	A Recent Stranding of Omura's Whale (Balaenoptera omurai) in Western Australia. Aquatic Mammals, 2016, 42, 193-197.	0.7	8
178	Variation in ribosomal DNA within and between populations of Isotoma petraea and Macrozamia riedlei. Heredity, 1997, 79, 578-583.	2.6	7
179	Variability in feed quality between populations of Acacia saligna (Labill.) H. Wendl. (Mimosoideae)—implications for domestication. Animal Feed Science and Technology, 2007, 136, 109-127.	2.2	7
180	Degree of fragmentation and population size do not adversely affect reproductive success of a rare shrub species, Banksia nivea (Proteaceae), in a naturally fragmented community. Botanical Journal of the Linnean Society, 2019, 191, 261-273.	1.6	7

#	Article	IF	Citations
181	Pollen dispersal, pollen immigration, mating and genetic diversity in restoration of the southern plains Banksia. Biological Journal of the Linnean Society, 2020, 129, 773-792.	1.6	7
182	Contrasting patterns of population divergence on young and old landscapes in <i>Banksia seminuda </i> (Proteaceae), with evidence for recognition of subspecies. Biological Journal of the Linnean Society, 2021, 133, 449-463.	1.6	7
183	Mixed Mating With Preferential Outcrossing in Acacia saligna (Labill.) H. Wendl. (Leguminosae:) Tj ETQq1 1 0.784	4314 rgBT 0.8	/Qverlock 1
184	Genetic Diversity, Mating System, and Reproductive Output of Restored <i>Melaleuca acuminata < i> Populations are Comparable to Natural Remnant Populations. Ecological Restoration, 2019, 37, 222-232.</i>	0.8	7
185	Development, characterization and transferability of microsatellite markers for Cullen australasicum (Leguminosae). Conservation Genetics, 2009, 10, 1803-1805.	1.5	6
186	Comparative analysis indicates historical persistence and contrasting contemporary structure in sympatric woody perennials of semi-arid south-west Western Australia. Biological Journal of the Linnean Society, 2017, 120, 771-787.	1.6	6
187	Revealing the Introduction History and Phylogenetic Relationships of Passiflora foetida sensu lato in Australia. Frontiers in Plant Science, 2021, 12, 651805.	3.6	6
188	Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity, 2022, 14, 98.	1.7	6
189	Species delimitation, hybridization and possible apomixis in a rapid radiation of Western Australian <i>Leptospermum</i> (Myrtaceae). Botanical Journal of the Linnean Society, 2022, 200, 378-394.	1.6	6
190	A taxonomic revision and morphological variation within Eucalyptus series Subulatae subseries Oleaginae (Myrtaceae), including the oil mallee complex, of south-western Australia. Australian Systematic Botany, 2005, 18, 525.	0.9	5
191	Characterization of polymorphic microsatellite DNA markers in <i>Banksia nivea</i> , formerly <i>Dryandra nivea</i> . Molecular Ecology Resources, 2008, 8, 1393-1394.	4.8	5
192	Genetic and morphological analysis of multi-stemmed plants of tuart (Eucalyptus gomphocephala). Australian Journal of Botany, 2016, 64, 704.	0.6	5
193	Genetic and morphological evidence supports the hybrid status of Adenanthos cunninghamii (now) Tj ETQq $1\ 1\ 0$.784314 r 2.5	gBT /Overlo
194	Extensive Genetic Connectivity and Historical Persistence Are Features of Two Widespread Tree Species in the Ancient Pilbara Region of Western Australia. Genes, 2020, 11, 863.	2.4	5
195	Genomic data and morphological reâ€assessment reveals synonymy and hybridisation among <i>>Seringia</i> taxa (Lasiopetaleae, Malvaceae) in remote northâ€western Australia. Taxon, 2020, 69, 307-320.	0.7	5
196	The role of landscape history in the distribution and conservation of threatened flora in the Southwest Australian Floristic Region. Biological Journal of the Linnean Society, 2021, 133, 394-410.	1.6	5
197	Association of putatively adaptive genetic variation with climatic variables differs between a parasite and its host. Evolutionary Applications, 2021, 14, 1732-1746.	3.1	5
198	Genetic and ecological consequences of recent habitat fragmentation in a narrow endemic plant species within an urban context. Biodiversity and Conservation, 2021, 30, 3457-3478.	2.6	5

#	Article	IF	CITATIONS
199	Differential exposure and susceptibility to threats based on evolutionary history: how OCBIL theory informs flora conservation. Biological Journal of the Linnean Society, 2021, 133, 373-393.	1.6	5
200	As old as the hills: Pliocene palaeogeographical processes influence patterns of genetic structure in the widespread, common shrub Banksia sessilis. Ecology and Evolution, 2021, 11, 1069-1082.	1.9	5
201	Seed sourcing in the genomics era: multispecies provenance delineation for current and future climates. Restoration Ecology, 2022, 30, .	2.9	5
202	A study of the reproductive biology of blue-flowered Conospermum species (Proteaceae). Australian Journal of Botany, 2006, 54, 543.	0.6	4
203	Isolation and characterization of microsatellites in the woody shrub, <i>Banksia sphaerocarpa</i> var. <i>caesia</i> (Proteaceae). Molecular Ecology Resources, 2009, 9, 148-149.	4.8	4
204	Isolation via 454 sequencing, and characterisation of microsatellite markers for the Pilbara endemic Acacia atkinsiana (Fabaceae). Conservation Genetics Resources, 2014, 6, 585-587.	0.8	4
205	A molecular journey in conservation genetics. Pacific Conservation Biology, 2018, 24, 235.	1.0	4
206	Evaluating restoration outcomes through assessment of pollen dispersal, mating system, and genetic diversity. Restoration Ecology, 2021, 29, e13335.	2.9	4
207	Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Molecular Ecology, 2022, 31, 1735-1752.	3.9	4
208	Phylogenomic analysis confirms polyphyly of <i>Leptospermum</i> and delineates five major clades that warrant generic recognition. Taxon, 2022, 71, 348-359.	0.7	4
209	Limited phylogeographic and genetic connectivity in <i>Acacia</i> species of low stature in an arid landscape. Ecology and Evolution, 2022, 12, .	1.9	4
210	Confirming the genetic affinity of the â€~Eyres Green' saltbush cultivar as oldman saltbush (Atriplex) Tj ETQq0	0 0 0 rgBT	/Gverlock 10
211	Characterization and cross-amplification of novel microsatellite markers for two Australian sedges, Lepidosperma sp. Mt Caudan and L. sp. Parker Range (Cyperaceae). Conservation Genetics Resources, 2014, 6, 333-336.	0.8	3
212	Genetics and ecology of plant species occurring on the Banded Iron Formations in the Yilgarn, Western Australia. Australian Journal of Botany, 2019, 67, 165.	0.6	3
213	Genetic viability of a reintroduced population of south-western common brushtail possum (Trichosurus vulpecula hypoleucus), Western Australia. Pacific Conservation Biology, 2020, 26, 282.	1.0	3
214	Disentangling the Genetic Relationships of Three Closely Related Bandicoot Species across Southern and Western Australia. Diversity, 2021, 13, 2.	1.7	3
215	Distribution, Biogeography and Characteristics of the Threatened and Data-Deficient Flora in the Southwest Australian Floristic Region. Diversity, 2022, 14, 493.	1.7	3
216	Characterisation of microsatellite markers isolated from Bossiaea ornata (Lindl.) Benth. (Papilionaceae). Conservation Genetics, 2009, 10, 1985-1987.	1.5	2

#	Article	IF	CITATIONS
217	Characterization of polymorphic microsatellite DNA markers in <i>Hakea oldfieldii</i> Benth. (Proteaceae). Molecular Ecology Resources, 2009, 9, 1214-1216.	4.8	2
218	Isolation and characterisation of 14 microsatellite loci from a short-range endemic, Western Australian tree, Banksia arborea (C.A. Gardner). Conservation Genetics Resources, 2013, 5, 1143-1145.	0.8	2
219	Isolation and characterisation of ten microsatellite markers for the tetraploid Stypandra glauca R.Br. (Hemerocallidaceae) identified using next generation sequencing. Conservation Genetics Resources, 2013, 5, 529-531.	0.8	2
220	Isolation and characterisation of 11 microsatellite loci from the Western Australian Spirostreptid millipede, Atelomastix bamfordi. Conservation Genetics Resources, 2013, 5, 533-535.	0.8	2
221	Characterisation of microsatellite markers for the granite endemic Kunzea pulchella (Lindl.) A. S. George (Myrtaceae) identified using next generation sequencing. Conservation Genetics Resources, 2013, 5, 129-131.	0.8	2
222	Characterisation of microsatellite DNA markers for Grevillea paradoxa (F. Muell). Conservation Genetics Resources, 2014, 6, 139-141.	0.8	2
223	Isolation and characterisation of ten microsatellite loci from a Western Australian tree, Banksia sessilis (Proteaceae). Conservation Genetics Resources, 2015, 7, 513-515.	0.8	2
224	Taxonomic resolution of the Tetratheca hirsuta (Elaeocarpaceae) species complex using an integrative approach. Australian Systematic Botany, 2017, 30, 1.	0.9	2
225	Biological Invasions, Climate Change, and Genomics. , 2016, , 37-70.		2
226	Conservation Genetics for Management of Threatened Plant and Animal Species. Diversity, 2022, 14, 251.	1.7	2
227	Extensive gene flow in a threatened bat (Rhinonicteris aurantia) in an arid landscape. Global Ecology and Conservation, 2022, 37, e02154.	2.1	2
228	Topographic Complexity Facilitates Persistence Compared to Signals of Contraction and Expansion in the Adjacent Subdued Landscape. Frontiers in Conservation Science, 2022, 3, .	1.9	2
229	Characterisation of microsatellite DNA markers for the Wiry Honey Myrtle, Melaleuca nematophylla Craven. Conservation Genetics Resources, 2014, 6, 439-441.	0.8	1
230	Isolation and characterization of 11 microsatellite loci in the short-range endemic shrub Grevillea georgeana McGill (Proteaceae). Conservation Genetics Resources, 2014, 6, 221-222.	0.8	1
231	Characterisation of microsatellite DNA markers for Grevillea globosa C. A. Gardner. Conservation Genetics Resources, 2014, 6, 689-691.	0.8	1
232	Characterisation of microsatellite DNA markers for Mirbelia bursarioides A.M.Monro & Emp; Crisp ms Conservation Genetics Resources, 2014, 6, 693-695.	0.8	1
233	Isolation and characterization of 11 microsatellite primer pairs for the southwest Australian forest understorey species Kennedia coccinea (Fabaceae: Phaseoleae). Conservation Genetics Resources, 2014, 6, 777-779.	0.8	1
234	Plant mating system dynamics in restoration: a comparison of restoration and remnant populations of cscp > ci > Hakea laurina < /i> > cp > (Proteaceae). Restoration Ecology, 2022, 30, .	2.9	1

#	Article	IF	CITATIONS
235	Conditions for Investment in Genetic Biocontrol of Pest Vertebrates in Australia. Frontiers in Agronomy, 2022, 3, .	3.3	1
236	An integrated genetic approach to provenancing and establishment of founding individuals for restoration in the semiarid midwest region of Western Australia. Australian Journal of Botany, 2019, 67, 218.	0.6	0
237	Corrigendum to: Defining entities in the Acacia saligna (Fabaceae) species complex using a population genetics approach. Australian Journal of Botany, 2011, 59, 507.	0.6	0
238	Effect of genetic relatedness among parents on gain in salt tolerance in progeny of crosses of Eucalyptus occidentalis. Silvae Genetica, 2011, 60, 45-55.	0.8	0
239			