Gad Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 2010, 33, 453-467.	5.7	2,961
2	ROS signaling: the new wave?. Trends in Plant Science, 2011, 16, 300-309.	8.8	1,911
3	ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 2012, 35, 259-270.	5.7	1,339
4	The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli. Science Signaling, 2009, 2, ra45.	3.6	897
5	Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 2008, 133, 481-489.	5.2	861
6	Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology, 2011, 14, 691-699.	7.1	827
7	Metabolomics for plant stress response. Physiologia Plantarum, 2008, 132, 199-208.	5.2	583
8	A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 2014, 19, 623-630.	8.8	478
9	Could Heat Shock Transcription Factors Function as Hydrogen Peroxide Sensors in Plants?. Annals of Botany, 2006, 98, 279-288.	2.9	433
10	Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants Â. Plant Cell, 2013, 25, 3553-3569.	6.6	316
11	Double Mutants Deficient in Cytosolic and Thylakoid Ascorbate Peroxidase Reveal a Complex Mode of Interaction between Reactive Oxygen Species, Plant Development, and Response to Abiotic Stresses. Plant Physiology, 2007, 144, 1777-1785.	4.8	313
12	Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis. Plant Physiology, 2009, 151, 421-432.	4.8	259
13	Orchestrating rapid longâ€distance signaling in plants with Ca ²⁺ , <scp>ROS</scp> and electrical signals. Plant Journal, 2017, 90, 698-707.	5.7	250
14	Unraveling Δ1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes. Journal of Biological Chemistry, 2009, 284, 26482-26492.	3.4	239
15	Extranuclear protection of chromosomal DNA from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1711-1716.	7.1	190
16	Whole-Plant Live Imaging of Reactive Oxygen Species. Molecular Plant, 2019, 12, 1203-1210.	8.3	158
17	A Cyclic Nucleotide-Gated Channel (CNGC16) in Pollen Is Critical for Stress Tolerance in Pollen Reproductive Development Â. Plant Physiology, 2013, 161, 1010-1020.	4.8	143
18	Enhanced seed production under prolonged heat stress conditions in <i>Arabidopsis thaliana</i> plants deficient in cytosolic ascorbate peroxidase 2. Journal of Experimental Botany, 2013, 64, 253-263.	4.8	114

GAD MILLER

#	Article	IF	CITATIONS
19	ASCORBATE PEROXIDASE6 Protects Arabidopsis Desiccating and Germinating Seeds from Stress and Mediates Cross Talk between Reactive Oxygen Species, Abscisic Acid, and Auxin Â. Plant Physiology, 2014, 166, 370-383.	4.8	109
20	Ultraâ€fast alterations in <scp>mRNA</scp> levels uncover multiple players in light stress acclimation in plants. Plant Journal, 2015, 84, 760-772.	5.7	71
21	Analysis and Visualization of RNA-Seq Expression Data Using RStudio, Bioconductor, and Integrated Genome Browser. Methods in Molecular Biology, 2015, 1284, 481-501.	0.9	69
22	Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Science, 2011, 181, 140-150.	3.6	67
23	Reactive oxygen species tune root tropic responses. Plant Physiology, 2016, 172, pp.00660.2016.	4.8	44
24	Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress. Plant Journal, 2019, 98, 942-952.	5.7	44
25	A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics, 2018, 19, 549.	2.8	37
26	The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68, 3557-3571.	4.8	34
27	New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds. Plant Signaling and Behavior, 2014, 9, e976489.	2.4	29
28	Enhanced Reproductive Thermotolerance of the Tomato high pigment 2 Mutant Is Associated With Increased Accumulation of Flavonols in Pollen. Frontiers in Plant Science, 2021, 12, 672368.	3.6	18
29	SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science, 2018, 270, 278-291.	3.6	15
30	ASCORBATE PEROXIDASE6 delays the onset of age-dependent leaf senescence. Plant Physiology, 2021, 185, 441-456.	4.8	15
31	Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space. Microbial Ecology, 2016, 72, 659-668.	2.8	12
32	Characterization of novel pollen-expressed transcripts reveals their potential roles in pollen heat stress response in Arabidopsis thaliana. Plant Reproduction, 2021, 34, 61-78.	2.2	11
33	Exogenous Abscisic Acid Confers Salinity Tolerance in <i>Chlamydomonas reinhardtii</i> During Its Life Cycle. Journal of Phycology, 2021, 57, 1323-1334.	2.3	10
34	A Ratiometric Calcium Reporter CGf Reveals Calcium Dynamics Both in the Single Cell and Whole Plant Levels Under Heat Stress. Frontiers in Plant Science, 2021, 12, 777975.	3.6	10
35	Identification of novel transcriptional regulators of <i>Zat12</i> using comprehensive yeast oneâ€hybrid screens. Physiologia Plantarum, 2016, 157, 422-441.	5.2	9
36	Large-Scale Analysis of Pollen Viability and Oxidative Level Using H2DCFDA-Staining Coupled with Flow Cytometry. Methods in Molecular Biology, 2020, 2160, 167-179.	0.9	7

#	Article	IF	CITATIONS
37	Reactive Oxygen Signaling in Plants. , 0, , 189-201.		4
38	Reproductive resilience: putting pollen grains in two baskets. Trends in Plant Science, 2022, 27, 237-246.	8.8	3