Ching-Hwa Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839074/publications.pdf

Version: 2024-02-01

		66343	79698
191	6,406	42	73
papers	citations	h-index	g-index
191	191	191	6810
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An all two-dimensional vertical heterostructure graphene/CuInP ₂ S ₆ /MoS ₂ for negative capacitance field effect transistor. Nanotechnology, 2022, 33, 125703.	2.6	11
2	Internal Built-In Electric Fields at Organic–Inorganic Interfaces of Two-Dimensional Ruddlesden–Popper Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2022, 14, 19818-19825.	8.0	3
3	Formation of van der Waals Stacked p–n Homojunction Optoelectronic Device of Multilayered ReSe ₂ by Cr Doping. Advanced Optical Materials, 2022, 10, .	7.3	8
4	Molybdenum disulfide homogeneous junction diode fabrication and rectification characteristics. Japanese Journal of Applied Physics, 2022, 61, 086504.	1.5	1
5	Van der Waals Heterostructure Photodetectors with Bias-Selectable Infrared Photoresponses. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32665-32674.	8.0	18
6	Dual phase two-color emission observed in van der Waals GaTe planes. Applied Surface Science, 2021, 542, 148593.	6.1	14
7	The Study of Optical Properties of III ₂ â€"VI ₃ Defect Semiconductor Group Compounds Ga ₂ S ₃ , Ga ₂ Se ₃ , In ₂ S ₃ , and In ₂ Se ₃ . Advanced Photonics Research, 2021, 2, 2000110.	3.6	8
8	Investigations of Electron-Electron and Interlayer Electron-Phonon Coupling in van der Waals hBN/WSe2/hBN Heterostructures by Photoluminescence Excitation Experiments. Materials, 2021, 14, 399.	2.9	8
9	The band-edge excitons observed in few-layer NiPS3. Npj 2D Materials and Applications, 2021, 5, .	7.9	21
10	Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity. Npj 2D Materials and Applications, 2021, 5, .	7.9	7
11	Photoactive Electroâ€Controlled Visual Perception Memory for Emulating Synaptic Metaplasticity and Hebbian Learning. Advanced Functional Materials, 2021, 31, 2105345.	14.9	18
12	Thermoreflectance characterization of the band-edge excitons observed in multilayered CulnP2S6. FlatChem, 2021, 29, 100290.	5.6	8
13	Probing negatively charged and neutral excitons in MoS ₂ /hBN and hBN/MoS ₂ /hBN van der Waals heterostructures. Nanotechnology, 2021, 32, 145717.	2.6	17
14	Upconversion of Light into Bright Intravalley Excitons via Dark Intervalley Excitons in hBN-Encapsulated WSe ₂ Monolayers. ACS Nano, 2021, 15, 19165-19174.	14.6	18
15	Nanowire Grid Polarization and Polarized Excitonic Emission Observed in Multilayer GaTe. Journal of Physical Chemistry Letters, 2020, 11, 608-617.	4.6	20
16	Multilayer GaSe/InSe Heterointerface-Based Devices for Charge Transport and Optoelectronics. ACS Applied Nano Materials, 2020, 3, 11769-11776.	5.0	18
17	Ga ₂ Se ₃ Defect Semiconductors: The Study of Direct Band Edge and Optical Properties. ACS Omega, 2020, 5, 18527-18534.	3.5	14
18	Inverse paired-pulse facilitation in neuroplasticity based on interface-boosted charge trapping layered electronics. Nano Energy, 2020, 77, 105258.	16.0	22

#	Article	IF	CITATIONS
19	Tuning Interface Barrier in 2D BP/ReSe ₂ Heterojunctions in Control of Optoelectronic Performances and Energy Conversion Efficiencies. ACS Photonics, 2020, 7, 2886-2895.	6.6	20
20	Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nature Communications, 2020, 11, 2972.	12.8	83
21	Optical and Thermoelectric Properties of Surface-Oxidation Sensitive Layered Zirconium Dichalcogenides ZrS2â" x Sex (x = 0, 1, 2) Crystals Grown by Chemical Vapor Transport. Crystals, 2020, 10, 327.	2.2	18
22	Study of Structural, Thermoelectric, and Photoelectric Properties of Layered Tin Monochalcogenides SnX (X = S, Se) for Energy Application. ACS Applied Energy Materials, 2020, 3, 4896-4905.	5.1	22
23	High-responsivity broad-band sensing and photoconduction mechanism in direct-Gap î±-ln ₂ Se ₃ nanosheet photodetectors. Nanotechnology, 2020, 31, 465201.	2.6	23
24	Photoluminescence and time-resolved photoluminescence study of GaSe1-xSx mixed crystal. , 2020, , .		0
25	Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale, 2019, 11, 13385-13396.	5.6	32
26	Mode-locked Tm-doped fiber laser with large modulation depth ReS _{1.02} Se _{0.98} nanosheet saturable absorber. Japanese Journal of Applied Physics, 2019, 58, 100907.	1.5	5
27	High-Mobility InSe Transistors: The Nature of Charge Transport. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35969-35976.	8.0	23
28	Multifunctional full-visible-spectrum optoelectronics based on a van der Waals heterostructure. Nano Energy, 2019, 66, 104107.	16.0	28
29	InSe Tribotronic Transistors: Lowâ€Voltage Operational, Lowâ€Power Consuming, and High Sensitive Tactile Switch Based on 2D Layered InSe Tribotronics (Adv. Funct. Mater. 19/2019). Advanced Functional Materials, 2019, 29, 1970125.	14.9	0
30	Few-layer ReS < sub > $2(1\hat{a}^2x)$ < /sub > Se < sub > $2x$ < /sub > nanoflakes for noise-like pulse generation in a mode-locked ytterbium-doped fiber laser. Journal of Materials Chemistry C, 2019, 7, 6900-6904.	5.5	19
31	Analog Circuit Applications Based on Allâ€2D Ambipolar ReSe ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1809011.	14.9	36
32	Lowâ€Voltage Operational, Lowâ€Power Consuming, and High Sensitive Tactile Switch Based on 2D Layered InSe Tribotronics. Advanced Functional Materials, 2019, 29, 1809119.	14.9	28
33	Effect of Cr on the Structure and Property of Mo _{1–<i>x</i>} Cr _{<i>x</i>} Se ₂ (0 ≠ <i>x</i> ≠0.2) and Cr ₂ Se ₃ . ACS Applied Electronic Materials, 2019, 1, 370-378.	4.3	12
34	Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy, 2019, 56, 641-650.	16.0	49
35	Synthesis, optical characterization, and environmental applications of \hat{I}^2 -Ga2O3 nanowires. , 2019, , 67-90.		8
36	Ternary ReS _{2(1-x)} Se _{2x} alloy saturable absorber for passively Q-switched and mode-locked erbium-doped all-fiber lasers. Photonics Research, 2019, 7, 283.	7.0	26

3

#	Article	IF	CITATIONS
37	Ultraefficient Ultraviolet and Visible Light Sensing and Ohmic Contacts in High-Mobility InSe Nanoflake Photodetectors Fabricated by the Focused Ion Beam Technique. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5740-5749.	8.0	45
38	Curvature-dependent flexible light emission from layered gallium selenide crystals. RSC Advances, 2018, 8, 2733-2739.	3.6	21
39	Temperature dependence of direct and indirect band gaps of Bi13I2S18 hexagonal rod crystals. Materials Chemistry and Physics, 2018, 206, 71-75.	4.0	8
40	Polarization Photoelectric Conversion in Layered GeS. Advanced Optical Materials, 2018, 6, 1701194.	7.3	36
41	High Mobilities in Layered InSe Transistors with Indiumâ€Encapsulationâ€Induced Surface Charge Doping. Advanced Materials, 2018, 30, e1803690.	21.0	101
42	Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science, 2018, 9, 5452-5460.	7.4	22
43	In-Plane Axially Enhanced Photocatalysis by Re ₄ Diamond Chains in Layered ReS ₂ . Journal of Physical Chemistry C, 2018, 122, 18776-18784.	3.1	14
44	The Study of Near-Band-Edge Property in Oxygen-Incorporated ZnS for Acting as an Efficient Crystal Photocatalyst. ACS Omega, 2018, 3, 6351-6359.	3.5	8
45	Bending photoluminescence study of 2D layered GaSe. , 2018, , .		O
46	Anisotropic Spectroscopy and Electrical Properties of 2D ReS _{2(1â€"} <i></i> Alloys with Distorted 1T Structure. Small, 2017, 13, 1603788.	10.0	70
47	The structure and opto–thermo electronic properties of a new (Bi(Bi ₂ S ₃) ₉ I ₃) _{2/3} hexagonal nano-/micro-rod. Chemical Communications, 2017, 53, 3741-3744.	4.1	14
48	The study of flexible emission and photoconductivity in 2D layered InSe toward an applicable 1000-nm light emitter and absorber. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	9
49	Direct and indirect light emissions from layered ReS _{2â^'<i>x</i>} Se <i>_x</i> (0) Tj ETQq1	1 0.78431 2.6	l4 rgBT /Ove
50	Direct identification of monolayer rhenium diselenide by an individual diffraction pattern. Nano Research, 2017, 10, 2535-2544.	10.4	5
51	Pressure-induced metallization and superconducting phase in ReS 2. Npj Quantum Materials, 2017, 2, .	5.2	53
52	Interplay Between Cr Dopants and Vacancy Clustering in the Structural and Optical Properties of WSe ₂ . ACS Nano, 2017, 11, 11162-11168.	14.6	33
53	Cleavage tendency of anisotropic two-dimensional materials: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Re</mml:mi><mml:msub><mml:mi< td=""><td>i>X3.2</td><td>mi><mml:m 36</mml:m </td></mml:mi<></mml:msub></mml:mrow></mml:math>	i>X3.2	mi> <mml:m 36</mml:m
54	and <a 1998="" href="mailto:mmlms:mmml=" http:="" math="" mthmthmth"="" www.w3.org="">mm.physical Review 8, 2017, 96, . Optical Study of High Quality <i>c</i> -ZnS Crystals for UV Photodiodes and Photoelectrochemical Applications. ChemistrySelect, 2017, 2, 9391-9395.	1.5	2

#	Article	IF	Citations
55	Synthesis and Optical Characterization of Oxygen-Incorporated ZnS _{(1–⟨i⟩x⟨ i⟩)⟨ sub⟩O⟨sub⟩⟨i⟩x⟨ i⟩⟨ sub⟩ for UV–Visible Color Palette Light-Emission Matter. ACS Omega, 2017, 2, 4514-4523.}	3.5	15
56	High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano, 2017, 11, 7362-7370.	14.6	177
57	Polarized Bandâ€Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS. Advanced Optical Materials, 2017, 5, 1600814.	7.3	45
58	Optical and photodetector properties of stripe-like InS crystal. RSC Advances, 2016, 6, 97445-97448.	3.6	8
59	Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection. Sensors and Actuators A: Physical, 2016, 245, 119-126.	4.1	49
60	Synthesis and optical characterization of a high-quality ZnS substrate for optoelectronics and UV solar-energy conversion. RSC Advances, 2016, 6, 81053-81059.	3.6	4
61	Optical Characterization of Structural Quality in the Formation of In ₂ O ₃ Thin-Film Nanostructures. Journal of Physical Chemistry C, 2016, 120, 21983-21989.	3.1	16
62	Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nature Communications, 2016, 7, 12391.	12.8	109
63	Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe. 2D Materials, 2016, 3, 025019.	4.4	56
64	Observation of near-band-edge photoluminescence and UV photoresponse in near-stoichiometric Zn ₂ SnO ₄ nanowires. Materials Research Express, 2016, 3, 066201.	1.6	4
65	2D multilayer InSe – An applicable 1000 nm light emitter and absorber. , 2016, , .		2
66	Optical Characterization of Strong UV Luminescence Emitted from the Excitonic Edge of Nickel Oxide Nanotowers. Scientific Reports, 2015, 5, 15856.	3.3	20
67	Bending Photoluminescence and Surface Photovoltaic Effect on Multilayer InSe 2D Microplate Crystals. Advanced Optical Materials, 2015, 3, 1750-1758.	7.3	75
68	Amorphous effect on the advancing of structural-phase transition in & amp; #x03B3;-ln <inf>2</inf> Se <inf>3</inf> polycrystalline layers., 2015,,.		0
69	Optical-memory switching and oxygen detection based on the CVT grown \hat{I}^3 - and \hat{I} ±-phase In2Se3. Sensors and Actuators B: Chemical, 2015, 209, 811-819.	7.8	15
70	Polarized optical sensing and band-edge transitions in Ag(In _{0.5} Al _{0.5})S ₂ . Applied Physics Express, 2015, 8, 025801.	2.4	1
71	Surface Sensing and Optical Behavior of Al-Based Silver Chalcopyrites. Journal of Electronic Materials, 2015, 44, 984-990.	2.2	0
72	Influence of rhenium on the structural and optical properties of molybdenum disulfide. Japanese Journal of Applied Physics, 2015, 54, 04DH05.	1.5	21

#	Article	IF	Citations
73	Structural property and optical band edge of Ag(In0.5Al0.5)S2. Journal of Materials Science: Materials in Electronics, 2015, 26, 3766-3771.	2.2	О
74	Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nature Communications, 2015, 6, 6991.	12.8	505
75	Single-Layer ReS ₂ : Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. ACS Nano, 2015, 9, 11249-11257.	14.6	353
76	Optical behavior and structural property of CuAlS2 and AgAlS2 wide-bandgap chalcopyrites. Applied Optics, 2014, 53, E7.	1.8	10
77	Piezoreflectance study of near band edge excitonic-transitions of mixed-layered crystal Mo(SxSe1-x)2 solid solutions. Journal of Applied Physics, 2014, 115, .	2.5	20
78	Structural phase transition and erasable optically memorized effect in layered \hat{I}^3 -In2Se3 crystals. Journal of Applied Physics, 2014, 115, .	2.5	20
79	Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation. Journal of Applied Physics, 2014, 116, 144701.	2.5	0
80	Transport properties in semiconducting NbS2 nanoflakes. Applied Physics Letters, 2014, 105, .	3.3	39
81	Formation and stability of point defects in monolayer rhenium disulfide. Physical Review B, 2014, 89, .	3.2	151
82	Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nature Communications, 2014, 5, 3252.	12.8	906
83	Large-area nanoscale farmland-like surfaces of one-dimensional NbO ₂ nanorods with multi-growth directions: studies on the purple-blue photoluminescence and low-field electron emissions. Journal of Materials Chemistry C, 2014, 2, 8667-8672.	5.5	23
84	Amorphous effect on the advancing of wide-range absorption and structural-phase transition in \hat{I}^3 -In2Se3 polycrystalline layers. Scientific Reports, 2014, 4, 4764.	3.3	38
85	Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons and metal-semiconductor Zn/ZnO nanospheres. Scientific Reports, 2014, 4, 6967.	3.3	84
86	Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3. Scientific Reports, 2014, 4, 6143.	3.3	52
87	Characterization of nitrogen doped p -type ZnO thin films prepared by reactive ion beam sputter deposition. Surface and Coatings Technology, 2013, 231, 492-495.	4.8	14
88	Direct vapor transport synthesis of ZnGa2O4 nanowires with superior photocatalytic activity. Journal of Alloys and Compounds, 2013, 555, 325-329.	5.5	22
89	Thickness-tunable band gap modulation in γ-In2Se3. RSC Advances, 2013, 3, 24896.	3.6	26
90	The study of optical band edge property of bismuth oxide nanowires α-Bi_2O_3. Optics Express, 2013, 21, 11965.	3.4	96

#	Article	IF	Citations
91	Optical characterization of InAlAs/InGaAs metamorphic high-electron mobility transistor structures with tensile and compressive strain. Thin Solid Films, 2013, 529, 217-221.	1.8	2
92	Surface Oxide Effect on Optical Sensing and Photoelectric Conversion of α-In ₂ Se ₃ Hexagonal Microplates. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2269-2277.	8.0	91
93	The study of rapid thermal annealing on arsenic-doped ZnO for the p-type ZnO formation. Journal of Crystal Growth, 2013, 362, 193-196.	1.5	10
94	NIR and UV enhanced photon detector made by diindium trichalcogenides. Optical Materials Express, 2013, 3, 1420.	3.0	15
95	Optical properties of wide-band-gap chalcopyrite CuAl(Se_05S_05)_2 evaluated by thermoreflectance spectroscopy. Optical Materials Express, 2013, 3, 480.	3.0	5
96	Practical and User-Friendly Circuits and System Design for Signals' Sensing and Generation. Circuits and Systems, 2013, 04, 387-392.	0.1	3
97	Dichroic Electro-Optical Behavior of Rhenium Sulfide Layered Crystal. Crystal Structure Theory and Applications, 2013, 02, 65-69.	0.1	10
98	Nitrogen Doping Effect on Optical Property of Gallium Oxide Nanowires. ECS Journal of Solid State Science and Technology, 2012, 1, P78-P81.	1.8	5
99	Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy. AIP Advances, 2012, 2, .	1.3	13
100	Optical characterization of band-edge property of In6S7 compound. Applied Physics Letters, 2012, 100, .	3.3	20
101	Structural and Band-Edge Properties of Cu(Al _x ln _{1-X})S ₂ (0â‰xâ‰1) Series Chalcopyrite Semiconductors. Solid State Phenomena, 2012, 194, 133-138.	0.3	3
102	Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates. RSC Advances, 2012, 2, 2123.	3.6	26
103	The study of below and above band-edge imperfection states in In2S3 solar energy materials. Physica B: Condensed Matter, 2012, 407, 3052-3055.	2.7	11
104	Cathodoluminescence and Field-Emission Properties of \hat{l}^2 -Ga2O3 Nanobelts. Journal of Electronic Materials, 2012, 41, 3056-3061.	2.2	5
105	Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1â^'x)4 solid solutions. Optical Materials, 2012, 34, 1362-1365.	3.6	57
106	Enhanced photoelectric-conversion yield in niobium-incorporated In2S3 with intermediate band. Journal of Materials Chemistry, 2011, 21, 10518.	6.7	57
107	Piezoreflectance and Raman Characterization of Mo _{1â^'x} W _x S ₂ Layered Mixed Crystals. Solid State Phenomena, 2011, 170, 55-59.	0.3	8
108	Electronic structure and optical property of As2(Te1â^'S) 3 and As2(Te1â^'Se) 3 crystals. Journal of Alloys and Compounds, 2011, 509, 7198-7204.	5 . 5	6

#	Article	IF	Citations
109	Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In (sub>2O(sub>3. Journal of Physical Chemistry C, 2011, 115, 25088-25096.	3.1	58
110	Enhanced Photocatalytic Activity in βâ€Ga ₂ O ₃ Nanobelts. Journal of the American Ceramic Society, 2011, 94, 3117-3122.	3.8	63
111	Synthesis of \hat{l}^2 -Ga2O3 nanowires as a broadband emitter. Applied Physics A: Materials Science and Processing, 2011, 102, 105-108.	2.3	11
112	Single crystal growth and characterization of copper aluminum indium disulfide chalcopyrites. Journal of Crystal Growth, 2011, 317, 52-59.	1.5	10
113	Temperature Dependent Crystal-Field Splitting and Band-Edge Characteristic in Cu(AlxIn1-x)S2 (O â‰â€‰xâ€ Series Solar Energy Materials. Journal of the Electrochemical Society, 2011, 158, H554.	€‰â‰â€° 2.9	% 1)
114	Optical Characterization of Electronic Structure of CuInS ₂ and CuAlS ₂ Chalcopyrite Crystals. Solid State Phenomena, 2011, 170, 21-24.	0.3	1
115	Effect of temperature on lateral growth of ZnO grains grown by MOCVD. Ceramics International, 2010, 36, 69-73.	4.8	38
116	Growth and characterization of near-band-edge transitions in \hat{I}^2 -In2S3 single crystals. Journal of Crystal Growth, 2010, 312, 2718-2723.	1.5	52
117	Nitrogen-doped ZnO prepared by capillaritron reactive ion beam sputtering deposition. Applied Surface Science, 2010, 256, 4153-4156.	6.1	5
118	Thermoreflectance characterization of band-edge excitonic transitions in CuAlS2 ultraviolet solar-cell material. Applied Physics Letters, 2010, 96, .	3.3	23
119	The study of surface photoconductive response in indium sulfide crystals. Journal Physics D: Applied Physics, 2010, 43, 415301.	2.8	17
120	Temperature-dependent photoconductivity in \hat{I}^2 -In2S3 single crystals. Journal of Applied Physics, 2010, 108, .	2.5	29
121	Polarized-thermoreflectance study of the band-edge transitions in Cu(Al_05In_05)S_2 solar-energy related crystal. Optics Express, 2010, 18, 3820.	3.4	9
122	Thermoreflectance characterization of \hat{l}^2 -Ga_2O_3 thin-film nanostrips. Optics Express, 2010, 18, 16360.	3.4	57
123	Electronic Structure and E[sub 1] Excitons of CulnS[sub 2] Energy-Related Crystals Studied by Temperature-Dependent Thermoreflectance Spectroscopy. Journal of the Electrochemical Society, 2010, 157, H219.	2.9	11
124	Structural and luminescent property of gallium chalcogenides GaSe1â^'x S x layer compounds. Journal of Materials Science: Materials in Electronics, 2009, 20, 207-210.	2.2	9
125	In-plane anisotropic electrical and optical properties of gold-doped rhenium disulphide. Journal of Materials Science: Materials in Electronics, 2009, 20, 476-479.	2.2	7
126	Optical and electrical characteristics of GaAs/InGaAs quantum-well device. Journal of Alloys and Compounds, 2009, 471, 567-569.	5. 5	9

#	Article	IF	Citations
127	Optical anisotropy of Au-doped ReS2 crystals. Journal of Alloys and Compounds, 2009, 480, 94-96.	5.5	16
128	Optical anisotropy of near band-edge transitions in zinc oxide nanostructures. Journal of Alloys and Compounds, 2009, 480, 50-53.	5. 5	5
129	Thermoelectric properties of Zn–Sb alloys doped with In. Journal of Alloys and Compounds, 2009, 480, 73-75.	5.5	21
130	Optical investigation of band-edge structure and built-in electric field of AlGaN/GaN heterostructures by means of thermoreflectance, photoluminescence, and contactless electroreflectance spectroscopy. Optics Letters, 2009, 34, 3604.	3.3	9
131	High room-temperature photoluminescence of one-dimensional Ta2O5nanorod arrays. Nanotechnology, 2009, 20, 445708.	2.6	59
132	Temperature-dependent photoreflectance and photoluminescence characterization of the subband structure and built-in electric field of GaAs/GalnAs graded-channel high electron mobility transistor structures. Semiconductor Science and Technology, 2009, 24, 035013.	2.0	3
133	Optical properties of near band-edge transitions in well-aligned and tilted ZnO nanostructures. Journal Physics D: Applied Physics, 2008, 41, 165410.	2.8	4
134	Characterization of indirect and direct interband transitions of anatase TiO2 by thermoreflectance spectroscopy. Applied Physics Letters, 2008, 93, .	3.3	40
135	Compensation and Carrier Conduction in Synthetic Fe[sub 1â^'x]Ni[sub x]S[sub 2]â€,(0â‰xâ‰0.1) Single Crystals. Journal of the Electrochemical Society, 2008, 155, H254.	2.9	2
136	Band-edge properties of layered germanium dichalcogenides. Physical Review B, 2007, 76, .	3.2	2
137	Comprehensive Characterization of AlGaAsâ^•InGaAsâ^•GaAs Composite-Channel High-Electron Mobility Transistor. Journal of the Electrochemical Society, 2007, 154, H951.	2.9	13
138	Optical anisotropy of ZnO nanocrystals on sapphire by thermoreflectance spectroscopy. Optics Letters, 2007, 32, 2765.	3.3	12
139	Optical characterization of a GaAs/In_0.5(AlxGa_1-x)_0.5P/GaAs heterostructure cavity by piezoreflectance spectroscopy. Optics Express, 2007, 15, 13886.	3.4	5
140	Characterization of As2(Se1â^'xSx)3 series glass system. Journal of Alloys and Compounds, 2007, 427, 305-309.	5.5	1
141	Dichroic optical and electrical properties of rhenium dichalcogenides layer compounds. Journal of Alloys and Compounds, 2007, 442, 245-248.	5.5	10
142	Improved InP-based double heterojunction bipolar transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1680-1684.	0.8	0
143	Band-Edge Transitions of a Metallorganic Chemical Vapor Deposited ZnO Film on Si by Thermoreflectance Spectroscopy. Electrochemical and Solid-State Letters, 2006, 9, G312.	2.2	2
144	Photoconductance and photoresponse of layer compound photodetectors in the UV-visible region. Review of Scientific Instruments, 2006, 77, 113102.	1.3	30

#	Article	IF	Citations
145	Characterization of near band-edge properties of synthetic p-FeS2 iron pyrite from electrical and photoconductivity measurements. Journal of Alloys and Compounds, 2006, 422, 321-327.	5.5	13
146	Improved InAlGaP-based heterostructure field-effect transistors. Semiconductor Science and Technology, 2006, 21, 540-543.	2.0	7
147	Characterization of Gap States in an Amorphous SiN[sub x] Film Grown on GaAs Substrate Using Modulation Spectroscopic Techniques. Electrochemical and Solid-State Letters, 2006, 9, G181.	2.2	1
148	Photoreflectance and Photoluminescence Study of In[sub x]Ga[sub 1â^x]Asâ^•GaAs Graded-Channel High Electron Mobility Transistors. Journal of the Electrochemical Society, 2006, 153, G966.	2.9	2
149	Optical properties of the interband transitions of layered gallium sulfide. Journal of Applied Physics, 2006, 100, 083508.	2.5	78
150	Thermoreflectance characterization of interband transitions of In0.34Al0.66As0.85Sb0.15 expitaxy on InP. Applied Physics Letters, 2006, 89, 191906.	3.3	4
151	Crystal structure and electronic structure of GaSe1â^'xSx series layered solids. Journal of Crystal Growth, 2005, 279, 321-328.	1.5	46
152	Characterization of Ge(Se1â^'xSx)2 series layered crystals grown by vertical Bridgman method. Journal of Crystal Growth, 2005, 281, 377-383.	1.5	7
153	Visible luminescence and structural property of GaSe1â^'xSx (0â‰xâ‰1) series layered crystals. Solid State Communications, 2005, 136, 591-594.	1.9	25
154	Thermoreflectance study of the electronic structure of Ge(Se1â^xSx)2. Physical Review B, 2005, 72, .	3.2	11
155	Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy. Optics Express, 2005, 13, 8.	3.4	37
156	Practical photoluminescence and photoreflectance spectroscopic system for optical characterization of semiconductor devices. Optics Express, 2005, 13, 3951.	3.4	11
157	Temperature Dependence of the Band-Edge Transitions of ZnCdBeSe. Japanese Journal of Applied Physics, 2004, 43, 459-466.	1.5	14
158	Polarization sensitive behaviour of the band-edge transitions in ReS2and ReSe2layered semiconductors. Journal of Physics Condensed Matter, 2004, 16, 5937-5944.	1.8	33
159	Practical thermoreflectance design for optical characterization of layer semiconductors. Review of Scientific Instruments, 2004, 75, 1098-1102.	1.3	50
160	High-resolution and easily implemented spectral measured system used for optical characterization of optoelectronic materials and devices. Optical Engineering, 2004, 43, 1628.	1.0	2
161	Optical properties of GaSe1â^'xSx series layered semiconductors grown by vertical Bridgman method. Materials Chemistry and Physics, 2004, 88, 313-317.	4.0	44
162	Preparation and characterization of Ni-incorporated FeS2 single crystals. Journal of Crystal Growth, 2004, 270, 535-541.	1.5	25

#	Article	IF	Citations
163	Growth and characterization of tungsten and molybdenum-doped ReSe2 single crystals. Journal of Alloys and Compounds, 2004, 383, 63-68.	5.5	14
164	Optical property of the near band-edge transitions in rhenium disulfide and diselenide. Journal of Alloys and Compounds, 2004, 383, 74-79.	5.5	49
165	Photoreflectance study of the excitonic transitions of rhenium disulphide layer compounds. Physical Review B, 2002, 66, .	3.2	48
166	Preparation and characterization of molybdenum-doped ReS2 single crystals. Journal of Physics Condensed Matter, 2002, 14, 4737-4746.	1.8	12
167	Electrical and optical anisotropic properties of rhenium-doped molybdenum disulphide. Journal of Alloys and Compounds, 2001, 317-318, 208-212.	5.5	24
168	In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. Journal of Alloys and Compounds, 2001, 317-318, 222-226.	5.5	70
169	Novel electronic design for double-modulation spectroscopy of semiconductor and semiconductor microstructures. Review of Scientific Instruments, 2001, 72, 4218-4222.	1.3	1
170	Polarized electrolyte-electroreflectance study of ReS2and ReSe2layered semiconductors. Journal of Physics Condensed Matter, 2001, 13, 8145-8152.	1.8	13
171	A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices. Review of Scientific Instruments, 2001, 72, 3103-3107.	1.3	6
172	Temperature dependent polarized-piezoreflectance study of GaInP. Journal of Physics Condensed Matter, 2000, 12, 2183-2192.	1.8	3
173	Temperature dependence piezoreflectance study of the effect of doping MoS2with rhenium. Journal of Physics Condensed Matter, 2000, 12, 3441-3449.	1.8	18
174	In-plane anisotropy of the optical and electrical properties of layered ReS2crystals. Journal of Physics Condensed Matter, 1999, 11, 5367-5375.	1.8	57
175	Electronic structure of ReS2 and ReSe2 from first-principles calculations, photoelectron spectroscopy, and electrolyte electrore flectance. Physical Review B, 1999, 60, 15766-15771.	3.2	56
176	The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State Communications, 1999, 111, 635-640.	1.9	44
177	Crystal structure and band-edge transitions of ReS2â^'xSex layered compounds. Journal of Physics and Chemistry of Solids, 1999, 60, 1797-1804.	4.0	69
178	Growth and characterization of rhenium-doped MoS2 single crystals. Journal of Crystal Growth, 1999, 205, 543-547.	1.5	53
179	An electrolyte electroreflectance study of ReS2. Solid State Communications, 1998, 109, 19-22.	1.9	4
180	Temperature dependence of energies and broadening parameters of the band-edge excitons of single crystals. Journal of Physics Condensed Matter, 1998, 10, 9317-9328.	1.8	51

#	Article	IF	CITATIONS
181	Absorption-edge anisotropy inReS2andReSe2layered semiconductors. Physical Review B, 1998, 58, 16130-16135.	3.2	94
182	Piezoreflectance study of band-edge excitons of ReS2â^xSexsingle crystals. Physical Review B, 1998, 58, 12575-12578.	3.2	18
183	Temperature dependence of energies and broadening parameters of the band-edge excitons of ReS2 and ReS2. Physical Review B, 1997, 55, 15608-15613.	3.2	60
184	Optical absorption of ReS2 and ReSe2 single crystals. Journal of Applied Physics, 1997, 81, 6380-6383.	2.5	56
185	Temperature dependent study of the band edge excitons of ReS2 and ReSe2. Journal of Alloys and Compounds, 1997, 262-263, 92-96.	5 . 5	13
186	Piezoreflectance study of the band-edge excitons of ReS2. Solid State Communications, 1997, 103, 19-23.	1.9	10
187	Inactivation of coupled respiration of mitochondria by inorganic arsenate and partial restoration by ATP. Biochemical and Biophysical Research Communications, 1972, 49, 690-697.	2.1	7
188	Microstructures and Thermoelectric Properties of (Bi ₂ Te ₃ 1-X/(CdTe) _{x<td>;0.3</td><td>0</td>}	;0.3	0
189	Thermoelectric Properties of Pb _{1-x} Cd _x Se Crystals Grown by Vertical Bridgman Method. Solid State Phenomena, 0, 194, 148-152.	0.3	0
190	Composition Dependent Band Gaps of Single Crystal Cu ₂ 7x445e _{1-x}) ₄ 5e _{1-x} 0 ₄ 5e _{1-x} 0 ₄ 45e _{1-x} 0 ₄ 45e _{1-x} 0 ₄ 6e _{1-x} 0 ₄ 6e _{1-x} 0 ₄ 6e <sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>6e<sub>< td=""><td>;0.3</td><td>6</td></sub><></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	;0.3	6
191	Optical Characterization of Undoped and Au-Doped MoS ₂ Single Crystals. Applied Mechanics and Materials, 0, 627, 50-53.	0.2	4