
Maria Giovanna Francipane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5838858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Renal organogenesis in the lymph node microenvironment. , 2022, , 17-25.		Ο
2	Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning. Stem Cell Reviews and Reports, 2022, 18, 559-569.	3.8	22
3	Fatâ€associated lymphoid clusters as expandable niches for ectopic liver development. Hepatology, 2022, 76, 357-371.	7.3	5
4	Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses, 2022, 14, 1538.	3.3	5
5	Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. International Journal of Molecular Sciences, 2021, 22, 8227.	4.1	5
6	Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment. International Journal of Molecular Sciences, 2021, 22, 10996.	4.1	14
7	Host Lymphotoxin-β Receptor Signaling Is Crucial for Angiogenesis of Metanephric Tissue Transplanted into Lymphoid Sites. American Journal of Pathology, 2020, 190, 252-269.	3.8	4
8	ExÂVivo Cell Therapy by Ectopic Hepatocyte Transplantation Treats the Porcine Tyrosinemia Model of Acute Liver Failure. Molecular Therapy - Methods and Clinical Development, 2020, 18, 738-750.	4.1	8
9	Kidneyâ€inâ€aâ€lymph node: A novel organogenesis assay to model human renal development and test nephron progenitor cell fates. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1724-1731.	2.7	15
10	Establishment and Characterization of 5-Fluorouracil-Resistant Human Colorectal Cancer Stem-Like Cells: Tumor Dynamics under Selection Pressure. International Journal of Molecular Sciences, 2019, 20, 1817.	4.1	33
11	Therapeutic potential of mTOR inhibitors for targeting cancer stem cells. British Journal of Clinical Pharmacology, 2016, 82, 1180-1188.	2.4	27
12	Toward Organs on Demand: Breakthroughs and Challenges in Models of Organogenesis. Current Pathobiology Reports, 2016, 4, 77-85.	3.4	21
13	Pluripotent Stem Cells to Rebuild a Kidney: The Lymph Node as a Possible Developmental Niche. Cell Transplantation, 2016, 25, 1007-1023.	2.5	9
14	Regenerating a kidney in a lymph node. Pediatric Nephrology, 2016, 31, 1553-1560.	1.7	6
15	The Lymph Node as a New Site for Kidney Organogenesis. Stem Cells Translational Medicine, 2015, 4, 295-307.	3.3	21
16	Abstract LB-C10: Identification of Therapeutic Targets for Chemotherapy-Resistant Colon Cancer Stem Cells. , 2015, , .		1
17	Maturation of embryonic tissues in a lymph node: a new approach for bioengineering complex organs. Organogenesis, 2014, 10, 323-331.	1.2	12
18	mTOR pathway in colorectal cancer: an update. Oncotarget, 2014, 5, 49-66.	1.8	155

#	Article	IF	CITATIONS
19	Cancer Stem Cells: A Moving Target. Current Pathobiology Reports, 2013, 1, 111-118.	3.4	27
20	A Study of Cancer Heterogeneity: From Genetic Instability to Epigenetic Diversity in Colorectal Cancer. , 2013, , 363-388.		3
21	Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget, 2013, 4, 1948-1962.	1.8	88
22	Management of Liver Failure: From Transplantation to Cell-Based Therapy. Cell Medicine, 2011, 2, 9-26.	5.0	3
23	Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010, 138, 2151-2162.	1.3	411
24	Suppressor of Cytokine Signaling 3 Sensitizes Anaplastic Thyroid Cancer to Standard Chemotherapy. Cancer Research, 2009, 69, 6141-6148.	0.9	32
25	Efficient Killing of Human Colon Cancer Stem Cells by γĨ´T Lymphocytes. Journal of Immunology, 2009, 182, 7287-7296.	0.8	260
26	Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death and Differentiation, 2008, 15, 762-772.	11.2	191
27	Isolation and Culture of Colon Cancer Stem Cells. Methods in Cell Biology, 2008, 86, 311-324.	1.1	83
28	Crucial Role of Interleukin-4 in the Survival of Colon Cancer Stem Cells. Cancer Research, 2008, 68, 4022-4025.	0.9	113
29	MUC1 Oncoprotein Promotes Refractoriness to Chemotherapy in Thyroid Cancer Cells. Cancer Research, 2007, 67, 5522-5530.	0.9	33