Charles W Luetje

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837866/publications.pdf

Version: 2024-02-01

471509 454955 1,435 29 17 30 citations h-index g-index papers 30 30 30 1476 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14383-14388.	7.1	198
2	Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis. PLoS ONE, 2010, 5, e8685.	2.5	138
3	Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochemistry and Molecular Biology, 2012, 42, 499-505.	2.7	124
4	An Odorant Receptor from the Southern House Mosquito Culex pipiens quinquefasciatus Sensitive to Oviposition Attractants. PLoS ONE, 2010, 5, e10090.	2.5	124
5	Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 320-325.	7.1	110
6	Transmembrane Segment 3 of Drosophila melanogaster Odorant Receptor Subunit 85b Contributes to Ligand-Receptor Interactions. Journal of Biological Chemistry, 2010, 285, 11854-11862.	3.4	93
7	Functional analysis of a mammalian odorant receptor subfamily. Journal of Neurochemistry, 2006, 97, 1506-1518.	3.9	88
8	Subunit Contributions to Insect Olfactory Receptor Function: Channel Block and Odorant Recognition. Chemical Senses, 2011, 36, 781-790.	2.0	81
9	Odorant Receptor from the Southern House Mosquito Narrowly Tuned to the Oviposition Attractant Skatole. Journal of Chemical Ecology, 2010, 36, 797-800.	1.8	80
10	Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit. PLoS ONE, 2012, 7, e36784.	2.5	60
11	Trading amino acids at the aphid– <i>Buchnera</i> symbiotic interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16003-16011.	7.1	53
12	A Determinant of Odorant Specificity Is Located at the Extracellular Loop 2-Transmembrane Domain 4 Interface of an Anopheles gambiae Odorant Receptor Subunit. Chemical Senses, 2014, 39, 761-769.	2.0	44
13	Discovery of Novel Ligands for Mouse Olfactory Receptor MOR42-3 Using an In Silico Screening Approach and In Vitro Validation. PLoS ONE, 2014, 9, e92064.	2.5	34
14	A broadly tuned mouse odorant receptor that detects nitrotoluenes. Journal of Neurochemistry, 2012, 121, 881-890.	3.9	31
15	Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. Scientific Reports, 2019, 9, 4055.	3.3	31
16	Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Research, 2014, 3, 84.	1.6	23
17	Molecular receptive range variation among mouse odorant receptors for aliphatic carboxylic acids. Journal of Neurochemistry, 2009, 109, 193-202.	3.9	21
18	Phenylthiophenecarboxamide Antagonists of the Olfactory Receptor Co-Receptor Subunit from a Mosquito. PLoS ONE, 2013, 8, e84575.	2.5	20

#	Article	IF	CITATIONS
19	Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae. Journal of Biological Chemistry, 2017, 292, 18916-18923.	3.4	15
20	Functional Assay of Mammalian and Insect Olfactory Receptors Using Xenopus Oocytes. Methods in Molecular Biology, 2013, 1003, 187-202.	0.9	9
21	Proton-dependent glutamine uptake by aphid bacteriocyte amino acid transporter ApGLNT1. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2085-2091.	2.6	9
22	In Vitro and in Vivo Neuronal Nicotinic Receptor Properties of (+)- and (\hat{a}^{-})-Pyrido[3,4]homotropane [(+)- and (\hat{a}^{-})-PHT]: (+)-PHT Is a Potent and Selective Full Agonist at $\hat{1}\pm6\hat{1}^2$ 2 Containing Neuronal Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2015, 6, 920-926.	3.5	9
23	Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit. PLoS ONE, 2017, 12, e0177454.	2.5	9
24	Functional and Nonfunctional Forms of CquiOR91, an Odorant Selectivity Subunit of Culex quinquefasciatus. Chemical Senses, 2017, 42, 333-341.	2.0	8
25	Receptive range analysis of a mouse odorant receptor subfamily. Journal of Neurochemistry, 2015, 134, 47-55.	3.9	7
26	Mammalian odorant receptor tuning breadth persists across distinct odorant panels. PLoS ONE, 2017, 12, e0185329.	2.5	6
27	Synthesis, Nicotinic Acetylcholine Binding, and in Vitro and in Vivo Pharmacological Properties of $2\hat{a}\in^2$ -Fluoro-(carbamoylpyridinyl)deschloroepibatidine Analogues. ACS Chemical Neuroscience, 2016, 7, 1004-1012.	3.5	5
28	Synthesis, Nicotinic Acetylcholine Receptor Binding, and in Vitro and in Vivo Pharmacological Properties of $2\hat{a} \in {}^2$ -Fluoro-(substituted thiophenyl)deschloroepibatidine Analogues. ACS Chemical Neuroscience, 2017, 8, 115-127.	3.5	2
29	Synthesis, nicotinic acetylcholine receptor binding, in vitro and in vivo pharmacology properties of $3\hat{a}\in^2$ -(substituted pyridinyl)-deschloroepibatidine analogs. Bioorganic and Medicinal Chemistry, 2015, 23, 5693-5701.	3.0	1