
Daisy W Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836581/publications.pdf Version: 2024-02-01

DAISY W/ LEUNC

#	Article	IF	CITATIONS
1	Cryo-EM analysis of Ebola virus nucleocapsid-like assembly. STAR Protocols, 2022, 3, 101030.	1.2	Ο
2	Multiple genetic paths including massive gene amplification allow <i>Mycobacterium tuberculosis</i> to overcome loss of ESX-3 secretion system substrates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
3	Development of Monoclonal Antibodies to Detect for SARS-CoV-2 Proteins. Journal of Molecular Biology, 2022, 434, 167583.	4.2	4
4	Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infectious Diseases, 2022, 8, 118-128.	3.8	3
5	Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. MBio, 2022, 13, e0109922.	4.1	15
6	Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annual Review of Virology, 2022, 9, 285-306.	6.7	24
7	Peptide–Antibody Fusions Engineered by Phage Display Exhibit an Ultrapotent and Broad Neutralization of SARS-CoV-2 Variants. ACS Chemical Biology, 2022, 17, 1978-1988.	3.4	7
8	Antigenic landscapes on <i>Staphylococcus aureus</i> pore-forming toxins reveal insights into specificity and cross-neutralization. MAbs, 2022, 14, .	5.2	3
9	Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020587118.	7.1	12
10	Effect of mutations in the SARSâ€CoVâ€2 spike protein on protein stability, cleavage, and cell ell fusion function. FASEB Journal, 2021, 35, .	0.5	1
11	Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. IScience, 2021, 24, 102681.	4.1	57
12	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	7.8	8
13	Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 2021, 184, 5163-5178.e24.	28.9	46
14	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
15	Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Reports, 2021, 37, 109803.	6.4	18
16	Domain-specific biochemical and serological characterization of SARS-CoV-2 nucleocapsid protein. STAR Protocols, 2021, 2, 100906.	1.2	1
17	The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Reports, 2020, 30, 153-163.e5.	6.4	31
18	Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infectious Diseases, 2020, 6, 489-502.	3.8	1

DAISY W LEUNG

#	Article	IF	CITATIONS
19	Mechanisms of Non-segmented Negative Sense RNA Viral Antagonism of Host RIG-I-Like Receptors. Journal of Molecular Biology, 2019, 431, 4281-4289.	4.2	15
20	Inhibition of Marburg Virus RNA Synthesis by a Synthetic Anti-VP35 Antibody. ACS Infectious Diseases, 2019, 5, 1385-1396.	3.8	14
21	Ebola Virus Replication Stands Out. Trends in Microbiology, 2019, 27, 565-566.	7.7	0
22	Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor. Journal of Molecular Biology, 2019, 431, 4354-4367.	4.2	14
23	Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Research, 2019, 162, 90-100.	4.1	12
24	The Ebola Viral Protein 35 N-Terminus Is a Parallel Tetramer. Biochemistry, 2019, 58, 657-664.	2.5	13
25	Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell, 2018, 172, 966-978.e12.	28.9	51
26	Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity, 2018, 48, 487-499.e5.	14.3	94
27	Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nature Immunology, 2018, 19, 130-140.	14.5	239
28	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell, 2018, 175, 1917-1930.e13.	28.9	108
29	Conservation of Structure and Immune Antagonist Functions of Filoviral VP35 Homologs Present in Microbat Genomes. Cell Reports, 2018, 24, 861-872.e6.	6.4	16
30	Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. Journal of Infectious Diseases, 2018, 218, S553-S564.	4.0	22
31	A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35–NP Interface. ACS Infectious Diseases, 2017, 3, 190-198.	3.8	22
32	Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nature Communications, 2017, 8, 15576.	12.8	42
33	Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion. MBio, 2017, 8, .	4.1	70
34	Filovirus Strategies to Escape Antiviral Responses. Current Topics in Microbiology and Immunology, 2017, 411, 293-322.	1.1	25
35	Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nature Microbiology, 2017, 2, 17101.	13.3	29
36	When your cap matters: structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Current Opinion in Structural Biology, 2016, 36, 133-141.	5.7	58

DAISY W LEUNG

#	Article	IF	CITATIONS
37	Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses. Journal of Molecular Biology, 2016, 428, 3483-3494.	4.2	26
38	Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. Journal of Molecular Biology, 2016, 428, 3467-3482.	4.2	24
39	Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins. Cell Reports, 2016, 14, 1632-1640.	6.4	75
40	An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Reports, 2015, 11, 376-389.	6.4	136
41	Ebola Virus VP35 Interaction with Dynein LC8 Regulates Viral RNA Synthesis. Journal of Virology, 2015, 89, 5148-5153.	3.4	47
42	INNATE IMMUNE EVASION MECHANISMS OF FILOVIRUSES. , 2015, , 557-586.		0
43	The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway. Cell Reports, 2014, 6, 1017-1025.	6.4	95
44	Ebola Virus VP24 Targets a Unique NLS Binding Site on Karyopherin Alpha 5 to Selectively Compete with Nuclear Import of Phosphorylated STAT1. Cell Host and Microbe, 2014, 16, 187-200.	11.0	198
45	In Silico Derived Small Molecules Bind the Filovirus VP35 Protein and Inhibit Its Polymerase Cofactor Activity. Journal of Molecular Biology, 2014, 426, 2045-2058.	4.2	75
46	Mutual Antagonism between the Ebola Virus VP35 Protein and the RIG-I Activator PACT Determines Infection Outcome. Cell Host and Microbe, 2013, 14, 74-84.	11.0	154
47	Structural basis for Marburg virus VP35–mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20661-20666.	7.1	90
48	Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends in Microbiology, 2012, 20, 139-146.	7.7	39
49	Structural insights into RNA recognition and activation of RIG-I-like receptors. Current Opinion in Structural Biology, 2012, 22, 297-303.	5.7	47
50	Filoviral Immune Evasion Mechanisms. Viruses, 2011, 3, 1634-1649.	3.3	71
51	Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 689-692.	0.7	11
52	Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nature Structural and Molecular Biology, 2010, 17, 165-172.	8.2	177
53	Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs. Journal of Virology, 2010, 84, 3004-3015.	3.4	135
54	Basic Residues within the Ebolavirus VP35 Protein Are Required for Its Viral Polymerase Cofactor Function. Journal of Virology, 2010, 84, 10581-10591.	3.4	80

DAISY W LEUNG

#	Article	IF	CITATIONS
55	<i>Ebolavirus</i> VP35 is a multifunctional virulence factor. Virulence, 2010, 1, 526-531.	4.4	58
56	Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain. Journal of Molecular Biology, 2010, 399, 347-357.	4.2	61
57	Structure of the Ebola VP35 interferon inhibitory domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 411-416.	7.1	149
58	Expression, purification, crystallization and preliminary X-ray studies of the Ebola VP35 interferon inhibitory domain. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 163-165.	0.7	13