
Jian-Ke Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/583653/publications.pdf Version: 2024-02-01

LIANLKE SUN

#	Article	IF	CITATIONS
1	Functional materials derived from open framework templates/precursors: synthesis and applications. Energy and Environmental Science, 2014, 7, 2071.	30.8	619
2	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	47.7	492
3	Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nature Catalysis, 2018, 1, 214-220.	34.4	310
4	Poly(ionic liquid) composites. Chemical Society Reviews, 2020, 49, 1726-1755.	38.1	234
5	Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. Journal of the American Chemical Society, 2015, 137, 7063-7066.	13.7	224
6	Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 2019, 378, 533-560.	18.8	205
7	Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society Reviews, 2016, 45, 6627-6656.	38.1	152
8	Solvent- and anion-controlled photochromism of viologen-based metal–organic hybrid materials. Journal of Materials Chemistry, 2012, 22, 12212.	6.7	145
9	Photoinduced Bending of a Large Single Crystal of a 1,2â€Bis(4â€pyridyl)ethyleneâ€Based Pyridinium Salt Powered by a [2+2] Cycloaddition. Angewandte Chemie - International Edition, 2013, 52, 6653-6657.	13.8	128
10	General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s. Journal of the American Chemical Society, 2017, 139, 8971-8976.	13.7	110
11	From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach. Journal of Materials Chemistry A, 2016, 4, 4273-4279.	10.3	88
12	Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature, 2020, 579, 73-79.	27.8	70
13	Supramolecular isomer-dependent photochromism and emission color tuning of bipyridinium salts. Journal of Materials Chemistry, 2011, 21, 17667.	6.7	55
14	Two-Pronged Effect of Warm Solution and Solvent-Vapor Annealing for Efficient and Stable All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2021, 6, 2898-2906.	17.4	50
15	Hierarchically Porous Organic Cages. Angewandte Chemie - International Edition, 2021, 60, 12490-12497.	13.8	43
16	Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring. Nature Communications, 2018, 9, 1717.	12.8	42
17	Ionic organic cage-encapsulating phase-transferable metal clusters. Chemical Science, 2019, 10, 1450-1456.	7.4	42
18	A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes <i>via</i> pseudomorphic replacement. Materials Horizons, 2017, 4, 681-687.	12.2	39

JIAN-KE SUN

#	Article	IF	CITATIONS
19	Poly(ionic liquid)s with engineered nanopores for energy and environmental applications. Polymer, 2020, 202, 122640.	3.8	39
20	Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s. Angewandte Chemie - International Edition, 2020, 59, 22109-22116.	13.8	37
21	Borromeanâ€Entanglementâ€Driven Assembly of Porous Molecular Architectures with Anionâ€Modified Pore Space. Chemistry - A European Journal, 2012, 18, 1924-1931.	3.3	36
22	Metal Nanoparticles Immobilized on Carbon Nanodots as Highly Active Catalysts for Hydrogen Generation from Hydrazine in Aqueous Solution. ChemCatChem, 2015, 7, 526-531.	3.7	36
23	Protonationâ€Triggered Conversion between Single―and Tripleâ€Stranded Helices with a Visible Fluorescence Change. Angewandte Chemie - International Edition, 2011, 50, 1149-1153.	13.8	34
24	Tunable solid-state photoluminescence based on proton-triggered structural transformation of 4,4′-bipyridinium derivative. Journal of Materials Chemistry C, 2013, 1, 744-750.	5.5	33
25	Polycatenationâ€Driven Selfâ€Assembly of Nanoporous Frameworks Based on a 1D Ribbon of Rings: Regular Structural Evolution, Interpenetration Transformation, and Photochemical Modification. Chemistry - A European Journal, 2014, 20, 2488-2495.	3.3	27
26	Structural diversity of the mixed-ligand system Mn-cpdba-2,2′-bpy controlled by temperature. CrystEngComm, 2011, 13, 1550-1556.	2.6	26
27	Dispersed nano-MOFs <i>via</i> a stimuli-responsive biohybrid-system with enhanced photocatalytic performance. Materials Horizons, 2019, 6, 802-809.	12.2	25
28	2D self-catenated coordination polymer constructed by triple- and double-helical chains. CrystEngComm, 2010, 12, 1709.	2.6	22
29	Flexible Viologenâ€Based Porous Framework Showing Xâ€ray Induced Photochromism with Singleâ€Crystalâ€toâ€5ingleâ€Crystal Transformation. Angewandte Chemie, 2017, 129, 14650-14654.	2.0	22
30	Thermally Triggered Reversible Transformation between Parallel Staggered Stacking and Plywood-Like Stacking of 1D Coordination Polymer Chains. Inorganic Chemistry, 2010, 49, 7046-7051.	4.0	18
31	Metalâ^'Organogermanate Frameworks Built by Two Kinds of Infinite Geâ^'O Chains with High Thermostability and Luminescent Properties. Inorganic Chemistry, 2010, 49, 10211-10213.	4.0	17
32	Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors. Polymer, 2017, 124, 246-251.	3.8	16
33	Doped porous carbon nanostructures with N Co O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Applied Surface Science, 2019, 463, 386-394.	6.1	16
34	lonic organic cage-encapsulated metal clusters for switchable catalysis. Cell Reports Physical Science, 2021, 2, 100546.	5.6	16
35	Encapsulation of Metal Clusters within Porous Organic Materials: From Synthesis to Catalysis Applications. Chemistry - an Asian Journal, 2022, 17, .	3.3	16
36	Three birds, one stone – photo-/piezo-/chemochromism in one conjugated nanoporous ionic organic network. Journal of Materials Chemistry C, 2018, 6, 9065-9070.	5.5	15

JIAN-KE SUN

#	Article	IF	CITATIONS
37	Electrostatically cooperative host-in-host of metal cluster âŠ, ionic organic cages in nanopores for enhanced catalysis. Nature Communications, 2022, 13, 1471.	12.8	14
38	pH-induced coordination assembly of mononuclear and dinuclear copper(II) complexes based on a 4,4′-bipyridinium analogue. Inorganic Chemistry Communication, 2010, 13, 86-89.	3.9	7
39	Hierarchically Porous Organic Cages. Angewandte Chemie, 2021, 133, 12598-12605.	2.0	7
40	Nanoporous Cationic Organic Cages for Trapping Heavy Metal Oxyanions. ACS Applied Nano Materials, 2022, 5, 890-898.	5.0	6
41	Hierarchically Porous Poly(ionic liquid) – Organic Cage Composite Membrane for Efficient Iodine Capture. Chemistry - A European Journal, 2022, 28, .	3.3	4
42	Porous Organic Cage Nanostructures for Construction of Complex Sequential Reaction Networks. ACS Applied Nano Materials, 2022, 5, 7974-7982.	5.0	4