
Qiuzhen Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836516/publications.pdf Version: 2024-02-01

Οιιιζήεν Υιν

#	Article	IF	CITATIONS
1	A major reorganization of Asian climate by the early Miocene. Climate of the Past, 2008, 4, 153-174.	3.4	471
2	Interglacials of the last 800,000 years. Reviews of Geophysics, 2016, 54, 162-219.	23.0	359
3	Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000Âyears. Climate Dynamics, 2012, 38, 709-724.	3.8	185
4	Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of the Past, 2009, 5, 21-31.	3.4	168
5	A multi-model assessment of last interglacial temperatures. Climate of the Past, 2013, 9, 699-717.	3.4	134
6	Diverse manifestations of the mid-Pleistocene climate transition. Nature Communications, 2019, 10, 352.	12.8	118
7	Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event. Nature Geoscience, 2010, 3, 243-246.	12.9	110
8	Interglacial analogues of the Holocene and its natural near future. Quaternary Science Reviews, 2015, 120, 28-46.	3.0	95
9	Total irradiation during any time interval of the year using elliptic integrals. Quaternary Science Reviews, 2010, 29, 1968-1982.	3.0	72
10	Mid-pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Science Bulletin, 2006, 51, 213-220.	1.7	69
11	Strong summer monsoon during the cool MIS-13. Climate of the Past, 2008, 4, 29-34.	3.4	67
12	Individual and combined effects of ice sheets and precession on MIS-13 climate. Climate of the Past, 2009, 5, 229-243.	3.4	63
13	Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 2013, 494, 222-225.	27.8	60
14	The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3. Climate of the Past, 2013, 9, 1789-1806.	3.4	54
15	The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago. Climate of the Past, 2008, 4, 79-90.	3.4	52
16	Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years. Climate of the Past, 2017, 13, 1919-1938.	3.4	52
17	Modelling the climatic diversity of the warm interglacials. Quaternary Science Reviews, 2012, 56, 126-141.	3.0	45
18	Grain-size features of a Miocene loess-soil sequence at Qinan: Implications on its origin. Science in China Series D: Earth Sciences, 2006, 49, 731-738.	0.9	42

QIUZHEN YIN

#	Article	IF	CITATIONS
19	Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science, 2021, 373, 1035-1040.	12.6	34
20	Orbital and millennial northern mid-latitude westerlies over the last glacial period. Climate Dynamics, 2019, 53, 3315-3324.	3.8	30
21	Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546, 109691.	2.3	28
22	The Position of the Current Warm Period in the Context of the Past 22,000ÂYears of Summer Climate in China. Geophysical Research Letters, 2021, 48, e2020GL091940.	4.0	27
23	An astronomically tuned 8.1 Ma eolian record from the Chinese Loess Plateau and its implication on the evolution of Asian monsoon. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26
24	Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000Âyears ago. Climate Dynamics, 2012, 39, 1093-1105.	3.8	26
25	Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics, 2018, 51, 667-686.	3.8	25
26	Diverse Regional Sensitivity of Summer Precipitation in East Asia to Ice Volume, CO ₂ and Astronomical Forcing. Geophysical Research Letters, 2021, 48, e2020GL092005.	4.0	25
27	Impacts of extremely asymmetrical polar ice sheets on the East Asian summer monsoon during the MIS-13 interglacial. Quaternary Science Reviews, 2020, 230, 106164.	3.0	23
28	The Climate of the MIS-13 Interglacial according to HadCM3. Journal of Climate, 2013, 26, 9696-9712.	3.2	20
29	SST and ice sheet impacts on the MIS–13 climate. Climate Dynamics, 2012, 39, 1739-1761.	3.8	17
30	A review of orbital-scale monsoon variability and dynamics in East Asia during the Quaternary. Quaternary Science Reviews, 2022, 288, 107593.	3.0	13
31	Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial. Climate of the Past, 2014, 10, 1645-1657.	3.4	12
32	Climate-soil model reveals causes of differences between Marine Isotope Stage 5e and 13 paleosols. Geology, 2018, 46, 99-102.	4.4	11
33	Atmospheric Dynamics Patterns in Southern Central Asia Since 800Âka Revealed by Loessâ€Paleosol Sequences in Tajikistan. Geophysical Research Letters, 2020, 47, e2020GL088320.	4.0	11
34	Hemisphere differences in response of sea surface temperature and sea ice to precession and obliquity. Global and Planetary Change, 2020, 192, 103223.	3.5	11
35	The cause of extremely high magnetic susceptibility of the S5S1 paleosol in the central Chinese Loess Plateau. Quaternary International, 2018, 493, 252-257.	1.5	10
36	State of the tropical Pacific Ocean and its enhanced impact on precipitation over East Asia during marine isotopic stage 13. Climate Dynamics, 2015, 44, 807-825.	3.8	9

QIUZHEN YIN

#	Article	IF	CITATIONS
37	Ensemble standardization constraints on the influence of the tree growth trends in dendroclimatology. Climate Dynamics, 2020, 54, 3387-3404.	3.8	9
38	Early Pleistocene integration of the Yellow River II: Evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110550.	2.3	9
39	Slowdown of global surface air temperature increase and acceleration of ice melting. Earth's Future, 2017, 5, 811-822.	6.3	8
40	Modelling the Past and Future Interglacials in Response to Astronomical and Greenhouse Gas Forcing. , 2012, , 437-462.		7
41	Possible link of an exceptionally strong East Asian summer monsoon to a La Niña-like condition during the interglacial MIS-13. Quaternary Science Reviews, 2020, 227, 106048.	3.0	7
42	Combination of insolation and ice-sheet forcing drive enhanced humidity in northern subtropical regions during MIS 13. Quaternary Science Reviews, 2020, 247, 106573.	3.0	7
43	Astronomical Theory and Orbital Forcing. , 2012, , 405-425.		7
44	Carbon isotopic compositions of pore and matrix carbonates in carbonate nodules, and origin of carbonate formation. Science Bulletin, 2010, 55, 2926-2929.	1.7	6
45	Modulation of the relationship between summer temperatures in the Qinghai–Tibetan Plateau and Arctic over the past millennium by external forcings. Quaternary Research, 2021, 103, 130-138.	1.7	6
46	Calibrating SoilGen2 for interglacial soil evolution in the Chinese Loess Plateau considering soil parameters and the effect of dust addition rhythm. Quaternary International, 2022, 607, 100-112.	1.5	6
47	Soil modeling for soil loss tolerance estimations: Exploring natural baselines and long-term variations. Clobal and Planetary Change, 2021, 204, 103548.	3.5	3
48	Modeling the Interglacials of the Last 1 Million Years. , 2012, , 57-64.		2
49	Comparison of Arctic and Southern Ocean sea ice between the last nine interglacials and the future. Climate Dynamics, 2022, 59, 519-529.	3.8	2
50	Bidecadal Temperature Anomalies Over the Tibetan Plateau and Arctic in Response to the 1450s Volcanic Eruptions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
51	Diverse response of global terrestrial vegetation to astronomical forcing and CO2 during the MIS-11 and MIS-13 interglacials. Climate Dynamics, 0, , .	3.8	2
52	Insolation and CO ₂ Impacts on the Spatial Differences of the MISâ€9 and MISâ€1 1 Climate Between Monsoonal China and Central Asia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
53	Orbital Forcing (Astronomical Theory of Paleoclimates). , 2021, , 435-443.		1