
Rebecca M Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836027/publications.pdf Version: 2024-02-01

REBECCA MINNCH

#	Article	IF	CITATIONS
1	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
2	Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. New England Journal of Medicine, 2016, 375, 2037-2050.	27.0	391
3	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	12.4	390
4	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
5	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
6	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	28.9	226
7	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
8	A Dominant Complement Fixation Pathway for Pneumococcal Polysaccharides Initiated by SIGN-R1 Interacting with C1q. Cell, 2006, 125, 47-58.	28.9	204
9	Escape from Autologous Neutralizing Antibodies in Acute/Early Subtype C HIV-1 Infection Requires Multiple Pathways. PLoS Pathogens, 2009, 5, e1000594.	4.7	172
10	The Development of CD4 Binding Site Antibodies during HIV-1 Infection. Journal of Virology, 2012, 86, 7588-7595.	3.4	123
11	HIV-1 Fitness Cost Associated with Escape from the VRC01 Class of CD4 Binding Site Neutralizing Antibodies. Journal of Virology, 2015, 89, 4201-4213.	3.4	121
12	Quality and quantity of T _{FH} cells are critical for broad antibody development in SHIV _{AD8} infection. Science Translational Medicine, 2015, 7, 298ra120.	12.4	119
13	An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014, 124, 1835-1843.	8.2	93
14	Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nature Communications, 2015, 6, 6565.	12.8	77
15	Appreciating HIV Type 1 Diversity: Subtype Differences in Env. AIDS Research and Human Retroviruses, 2009, 25, 237-248.	1.1	69
16	The B Cell Response Is Redundant and Highly Focused on V1V2 during Early Subtype C Infection in a Zambian Seroconverter. Journal of Virology, 2011, 85, 905-915.	3.4	66
17	HIV-1 diversity considerations in the application of the Intact Proviral DNA Assay (IPDA). Nature Communications, 2021, 12, 165.	12.8	60
18	Broad T cell immunity to the LcrV virulence protein is induced by targeted delivery to DECâ€205/CD205â€positive mouse dendritic cells. European Journal of Immunology, 2008, 38, 20-29.	2.9	59

Rebecca M Lynch

#	Article	IF	CITATIONS
19	Donor and Recipient Envs from Heterosexual Human Immunodeficiency Virus Subtype C Transmission Pairs Require High Receptor Levels for Entry. Journal of Virology, 2010, 84, 4100-4104.	3.4	53
20	SIV infection of rhesus macaques results in dysfunctional T- and B-cell responses to neo and recall Leishmania major vaccination. Blood, 2011, 118, 5803-5812.	1.4	45
21	Subtype-specific conservation of isoleucine 309 in the envelope V3 domain is linked to immune evasion in subtype C HIV-1 infection. Virology, 2010, 404, 59-70.	2.4	30
22	Accurate Prediction for Antibody Resistance of Clinical HIV-1 Isolates. Scientific Reports, 2019, 9, 14696.	3.3	30
23	Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. Journal of Virology, 2019, 93, .	3.4	27
24	Co-circulation of dengue, chikungunya, and Zika viruses in Colombia from 2008 to 2018. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2019, 43, 1.	1.1	27
25	Predicting the broadly neutralizing antibody susceptibility of the HIV reservoir. JCI Insight, 2019, 4, .	5.0	25
26	Establishment of a Novel Humanized Mouse Model To Investigate <i>In Vivo</i> Activation and Depletion of Patient-Derived HIV Latent Reservoirs. Journal of Virology, 2019, 93, .	3.4	24
27	Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. Journal of Clinical Investigation, 2020, 130, 3299-3304.	8.2	24
28	Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE, 2018, 13, e0193773.	2.5	24
29	Augmented Zika and Dengue Neutralizing Antibodies Are Associated With Guillain-Barré Syndrome. Journal of Infectious Diseases, 2019, 219, 26-30.	4.0	21
30	Susceptibility to Neutralization by Broadly Neutralizing Antibodies Generally Correlates with Infected Cell Binding for a Panel of Clade B HIV Reactivated from Latent Reservoirs. Journal of Virology, 2018, 92, .	3.4	20
31	Broadly Neutralizing Antibodies as Treatment: Effects on Virus and Immune System. Current HIV/AIDS Reports, 2017, 14, 54-62.	3.1	18
32	HIV vaccine research and discovery in the nonhuman primates model. Current Opinion in HIV and AIDS, 2013, 8, 1.	3.8	13
33	Long-term clinical outcomes of Zika-associated Guillain-Barré syndrome. Emerging Microbes and Infections, 2018, 7, 1-4.	6.5	11
34	B cells in HIV pathogenesis. Current Opinion in Infectious Diseases, 2016, 29, 23-30.	3.1	10
35	Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 78-88.	4.1	10
36	Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. Npj Vaccines, 2021, 6, 34.	6.0	7

Rebecca M Lynch

#	Article	IF	CITATIONS
37	Second-trimester Ultrasound and Neuropathologic Findings in Congenital Zika Virus Infection. Pediatric Infectious Disease Journal, 2018, 37, 1290-1293.	2.0	6
38	Relationships between Neutralization, Binding, and ADCC of Broadly Neutralizing Antibodies against Reservoir HIV. Journal of Virology, 2020, 95, .	3.4	5
39	Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS ONE, 2017, 12, e0173577.	2.5	5
40	Embracing diversity: how can broadly neutralizing antibodies effectively target a diverse HIV-1 reservoir?. Current Opinion in Pharmacology, 2020, 54, 173-178.	3.5	4
41	Authors' response to the letter to the editor entitled: Co-circulation of dengue, chikungunya, and Zika viruses and cross-protection. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2019, 43, 1.	1.1	4
42	Maintenance of CD4+ T cell TCR Vβ repertoire heterogeneity is characteristic of apathogenic SIV infection in non-human primate model of AIDS. Virology, 2007, 369, 324-328.	2.4	3
43	107 Escape from Neutralizing Antibody in Early Subtype C HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	2.1	0
44	Isolation of Monoclonal Antibodies from a SHIV-AD8 Infected Rhesus Macaque with Broad Neutralizing Activity. AIDS Research and Human Retroviruses, 2014, 30, A78-A78.	1.1	0
45	Intra- and inter-individual HIV diversity limits the application of the intact proviral detection assay (IPDA). Journal of Virus Eradication, 2019, 5, 9.	0.5	0