Shi-Lu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835581/publications.pdf

Version: 2024-02-01

257450 276875 1,807 62 24 41 citations h-index g-index papers 62 62 62 2078 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Key Piece in the Wolfe Cycle of Methanogenesis: The S–S Bond Dissociation Conducted by Noncubane [Fe ₄ S ₄] Cluster-Dependent Heterodisulfide Reductase. ACS Catalysis, 2022, 12, 2606-2622.	11.2	3
2	Highly magnetically responsive porous nanoparticles based on tris($\hat{1}^2$ -keto-hydrazo)-cyclohexane subunit: Fast removal of dyes from water with convenient recyclability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129173.	4.7	2
3	Handling methane: a Ni(<scp>i</scp>) F ₄₃₀ -like cofactor derived from VB ₁₂ is active in methyl-coenzyme M reductase. Chemical Communications, 2021, 57, 476-479.	4.1	1
4	A Key Piece in the Global N-Cycle: The N–N Bond Formation Presented by Heme-Dependent Hydrazine Synthase. ACS Catalysis, 2021, 11, 6489-6498.	11.2	9
5	Enzymatic N N bond formation: Mechanism for the N-nitroso synthesis catalyzed by non-heme iron SznF enzyme. Journal of Catalysis, 2021, 398, 44-53.	6.2	7
6	Radical 1,4â€Aryl Migration Enabled Remote Crossâ€Electrophile Coupling of αâ€Aminoâ€Î²â€Bromo Acid Esters with Aryl Bromides. Angewandte Chemie, 2021, 133, 21530-21537.	2.0	1
7	Radical 1,4â€Aryl Migration Enabled Remote Crossâ€Electrophile Coupling of αâ€Aminoâ€Î²â€Bromo Acid Esters with Aryl Bromides. Angewandte Chemie - International Edition, 2021, 60, 21360-21367.	13.8	22
8	Syndiospecific Polymerization of <i>o</i> -Methoxystyrene and Its Silyloxy or Fluorine-Substituted Derivatives by HNC-Ligated Scandium Catalysts: Synthesis of Ultrahigh-Molecular-Weight Functionalized Polymers. Macromolecules, 2021, 54, 10838-10849.	4.8	4
9	Mechanism and Inhibitor Exploration with Binuclear Mg Ketolâ€Acid Reductoisomerase: Targeting the Biosynthetic Pathway of Branchedâ€Chain Amino Acids. ChemBioChem, 2020, 21, 381-391.	2.6	4
10	Facile synthesis of a porous polynorbornene with an azobenzene subunit: selective adsorption of 4-nitrophenol over 4-aminophenol in water. Polymer Chemistry, 2020, 11, 6429-6434.	3.9	4
11	An Unprecedented Ring-Contraction Mechanism in Cobalamin-Dependent Radical <i>S</i> -Adenosylmethionine Enzymes. Journal of Physical Chemistry Letters, 2020, 11, 6812-6818.	4.6	8
12	Theoretical Study of VX Hydrolysis Mechanism Catalyzed by Phosphotriesterase Mutant H254R. ChemistrySelect, 2020, 5, 8986-8991.	1.5	2
13	Irreversible tautomerization as a powerful tool to access unprecedented functional porous organic polymers with a tris(\hat{l}^2 -keto-hydrazo)cyclohexane subunit (TKH-POPs). Chemical Communications, 2020, 56, 2103-2106.	4.1	10
14	How To Produce Methane Precursor in the Upper Ocean by An Untypical Nonâ∈Heme Feâ∈Dependent Methylphosphonate Synthase?. ChemPhysChem, 2020, 21, 385-396.	2.1	12
15	Using Machine Learning to Predict the Dissociation Energy of Organic Carbonyls. Journal of Physical Chemistry A, 2020, 124, 3844-3850.	2.5	18
16	Insights into the Chemical Reactivity in Acetyl-CoA Synthase. Inorganic Chemistry, 2020, 59, 15167-15179.	4.0	11
17	Theoretical Studies of Nickel-Dependent Enzymes. Inorganics, 2019, 7, 95.	2.7	15
18	Functional Porous Organic Polymers Comprising a Triaminotriphenylazobenzene Subunit as a Platform for Copper-Catalyzed Aerobic C–H Oxidation. Chemistry of Materials, 2019, 31, 5421-5430.	6.7	37

#	Article	IF	CITATIONS
19	Copper-catalyzed radical cascades of para-quinone methides with AIBN and H2O via α-cyanoalkylation by C–C bond cleavage: new access to benzofuran-2(3H)-ones. Chemical Communications, 2019, 55, 4578-4581.	4.1	44
20	How does Mo-dependent perchlorate reductase work in the decomposition of oxyanions?. Dalton Transactions, 2019, 48, 5683-5691.	3.3	11
21	From Alkane to Alkene: The Inert Aliphatic C–H Bond Activation Presented by Binuclear Iron Stearoyl-CoA Desaturase with a Long di-Fe Distance of 6 Ã ACS Catalysis, 2019, 9, 4345-4359.	11.2	8
22	Theoretical study of aromatic hydroxylation of the [Cu2(H-XYL)O2]2+ complex mediated by a side-on peroxo dicopper core and Cu-ligand effects. Dalton Transactions, 2019, 48, 16882-16893.	3.3	1
23	A Copper (II) Acetate Mediated Oxidativeâ€Coupling of Styrenes and Ethers Through an Unactivated C(<i>sp</i> ³)â°'H Bond Functionalization. Advanced Synthesis and Catalysis, 2019, 361, 1007-1011.	4.3	13
24	Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. ACS Applied Materials & Amp; Interfaces, 2019, 11, 1782-1789.	8.0	52
25	Azo-linked porous organic polymers: robust and time-efficient synthesis <i>via</i> NaBH ₄ -mediated reductive homocoupling on polynitro monomers and adsorption capacity towards aniline in water. Journal of Materials Chemistry A, 2018, 6, 5608-5612.	10.3	36
26	How is DMSP decomposed when catalyzed by RIDddP binuclear iron DMSP lyase?. Journal of Catalysis, 2018, 360, 1-8.	6.2	5
27	Exothermic or Endothermic Decomposition of Disubstituted Tetrazoles Tuned by Substitution Fashion and Substituents. Journal of Physical Chemistry A, 2018, 122, 8-15.	2.5	3
28	Asymmetric abstraction of two chemically-equivalent methylene hydrogens: significant enantioselectivity of endoperoxide presented by fumitremorgin B endoperoxidase. Physical Chemistry Chemical Physics, 2018, 20, 26500-26505.	2.8	13
29	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	5.6	20
30	An Ironâ€Containing Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie - International Edition, 2018, 57, 16416-16420.	13.8	97
31	An Ironâ€Containing Metal–Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition. Angewandte Chemie, 2018, 130, 16654-16658.	2.0	73
32	Efficient biosynthesis of heterodimeric C3-aryl pyrroloindoline alkaloids. Nature Communications, 2018, 9, 4428.	12.8	53
33	How does binuclear zinc amidohydrolase FwdA work in the initial step of methanogenesis: From formate to formyl-methanofuran. Journal of Inorganic Biochemistry, 2018, 185, 71-79.	3.5	2
34	Significant electron transfer in heme catalysis: The case of chlorite dismutase. Journal of Catalysis, 2017, 348, 40-46.	6.2	11
35	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. Chemistry - an Asian Journal, 2017, 12, 1272-1276.	3.3	4
36	From NAD ⁺ to Nickel Pincer Complex: A Significant Cofactor Evolution Presented by Lactate Racemase. Chemistry - A European Journal, 2017, 23, 7545-7557.	3.3	20

#	Article	IF	CITATIONS
37	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. Advanced Materials, 2016, 28, 3305-3312.	21.0	79
38	Unraveling the Mechanism and Regioselectivity of the B12â€Dependent Reductive Dehalogenase PceA. Chemistry - A European Journal, 2016, 22, 12391-12399.	3.3	25
39	The Decarboxylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acid Catalyzed by Prenylated FMN-Dependent Ferulic Acid Decarboxylase and the Enzyme Inhibition. Journal of Organic Chemistry, 2016, 81, 9289-9295.	3.2	25
40	Unactivated C(sp ³)–H Bond Functionalization of Alkyl Nitriles with Vinylarenes and Mechanistic Studies. Organic Letters, 2016, 18, 5986-5989.	4.6	53
41	High-valent cationic metal–organic macrocycles as novel supports for immobilization and enhancement of activity of polyoxometalate catalysts. Catalysis Science and Technology, 2016, 6, 8540-8547.	4.1	14
42	Aerobic oxidative cyclization of benzamides via meta-selective C–H tert-alkylation: rapid entry to 7-alkylated isoquinolinediones. Chemical Communications, 2016, 52, 4470-4473.	4.1	62
43	$\hat{l}/4$ (sub) 3 (sub)-Oxo stabilized by three metal cations is a sufficient nucleophile for enzymatic hydrolysis of phosphate monoesters. Dalton Transactions, 2016, 45, 2517-2522.	3.3	6
44	Which Oxidation State Initiates Dehalogenation in the B12-Dependent Enzyme NpRdhA: Co ^{II} , Co ^I , or Co ⁰ ?. ACS Catalysis, 2015, 5, 7350-7358.	11.2	35
45	How does the silicon element perform in JD-dyes: a theoretical investigation. Journal of Materials Chemistry A, 2015, 3, 8308-8315.	10.3	16
46	Include Dispersion in Quantum Chemical Modeling of Enzymatic Reactions: The Case of Isoaspartyl Dipeptidase. Journal of Chemical Theory and Computation, 2015, 11, 2525-2535.	5. 3	23
47	Phosphate Monoester Hydrolysis by Trinuclear Alkaline Phosphatase; DFT Study of Transition States and Reaction Mechanism. ChemPhysChem, 2014, 15, 2321-2330.	2.1	27
48	An investigation of possible competing mechanisms for Ni-containing methyl–coenzyme M reductase. Physical Chemistry Chemical Physics, 2014, 16, 14029.	2.8	28
49	A dominant homolytic O–Cl bond cleavage with low-spin triplet-state Fe(<scp>iv</scp>)î€O formed is revealed in the mechanism of heme-dependent chlorite dismutase. Dalton Transactions, 2014, 43, 973-981.	3.3	21
50	Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO ₂ conversion. Journal of Materials Chemistry A, 2014, 2, 18360-18366.	10.3	75
51	How Is Methane Formed and Oxidized Reversibly When Catalyzed by Ni ontaining Methyl oenzyme M Reductase?. Chemistry - A European Journal, 2012, 18, 6309-6315.	3.3	45
52	Theoretical investigation of astacin proteolysis. Journal of Inorganic Biochemistry, 2012, 111, 70-79.	3.5	17
53	Theoretical study on reaction mechanism of sulfuric acid and ammonia and hydration of (NH4)2SO4. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	5
54	How Is a Co-Methyl Intermediate Formed in the Reaction of Cobalamin-Dependent Methionine Synthase? Theoretical Evidence for a Two-Step Methyl Cation Transfer Mechanism. Journal of Physical Chemistry B, 2011, 115, 4066-4077.	2.6	44

#	Article	IF	CITATIONS
55	Significant van der Waals Effects in Transition Metal Complexes. Journal of Chemical Theory and Computation, 2010, 6, 2040-2044.	5.3	185
56	Reaction mechanism of the binuclear zinc enzyme glyoxalase II $\hat{a} \in$ A theoretical study. Journal of Inorganic Biochemistry, 2009, 103, 274-281.	3.5	41
57	Is There a Ni-Methyl Intermediate in the Mechanism of Methyl-Coenzyme M Reductase?. Journal of the American Chemical Society, 2009, 131, 9912-9913.	13.7	37
58	Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theoretical Chemistry Accounts, 2008, 120, 515-522.	1.4	67
59	Structure of Diethyl Phosphate Bound to the Binuclear Metal Center of Phosphotriesterase. Biochemistry, 2008, 47, 9497-9504.	2.5	67
60	Peptide Hydrolysis by the Binuclear Zinc Enzyme Aminopeptidase from <i>Aeromonas proteolytica</i> :  A Density Functional Theory Study. Journal of Physical Chemistry B, 2008, 112, 2494-2500.	2.6	68
61	Theoretical Study of the Phosphotriesterase Reaction Mechanism. Journal of Physical Chemistry B, 2007, 111, 1253-1255.	2.6	105
	Functionalization Mathodology for Synthesis of Silano End Eunctionalized Linear and Star Poly(and) Ti ETOco O O	0 r~PT /0	arlach 10 Tf

Functionalization Methodology for Synthesis of Silane-End-Functionalized Linear and Star Poly(aryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

4.8 1

Macromolecules, 0, , .