Mohammad H Malakooti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835220/publications.pdf

Version: 2024-02-01

59 papers

2,350 citations

201674 27 h-index 289244 40 g-index

59 all docs

59 docs citations

59 times ranked 2558 citing authors

#	Article	IF	CITATIONS
1	Multifunctional liquid metal polymer composites. Journal of Polymer Science, 2022, 60, 1300-1327.	3.8	39
2	Micromechanics modeling of multifunctional EGaln-polymer composites. , 2022, , .		1
3	Liquid metal architectures for soft and wearable energy harvesting devices. Multifunctional Materials, 2021, 4, 012001.	3.7	32
4	Liquid metal composites for flexible thermoelectric energy harvesting. , 2021, , .		1
5	A double inclusion model for liquid metal polymer composites. Composites Science and Technology, 2021, 208, 108752.	7.8	35
6	Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites. Journal of Composites Science, 2021, 5, 241.	3.0	0
7	Functional liquid metal nanoparticles: synthesis and applications. Materials Advances, 2021, 2, 7799-7819.	5.4	37
8	Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. ACS Applied Materials & Diterfaces, 2020, 12, 17921-17928.	8.0	115
9	Liquid metal nanocomposites. Nanoscale Advances, 2020, 2, 2668-2677.	4.6	88
10	Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices. ACS Applied Materials & Devices, 2020, 12, 21871-21882.	8.0	34
11	Liquid Metal Supercooling for Lowâ€Temperature Thermoelectric Wearables. Advanced Functional Materials, 2019, 29, 1906098.	14.9	142
12	Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nature Nanotechnology, 2019, 14, 684-690.	31.5	191
13	A Liquidâ€Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials. Advanced Materials, 2019, 31, e1900663.	21.0	204
14	Aramid nanofibers for multiscale fiber reinforcement of polymer composites. Composites Science and Technology, 2018, 161, 92-99.	7.8	115
15	Fabrication of Soft and Stretchable Electronics Through Integration of Printed Silver Nanoparticles and Liquid Metal Alloy. , 2018, , .		1
16	Energy Harvesting Performance of Printed Barium Titanate Nanocomposites., 2018,,.		0
17	Printed Nanocomposite Energy Harvesters with Controlled Alignment of Barium Titanate Nanowires. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38359-38367.	8.0	59
18	Novel self-healing CFRP composites with high glass transition temperatures. Composites Science and Technology, 2018, 168, 96-103.	7.8	32

#	Article	IF	Citations
19	EGalnâ€Assisted Roomâ€Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjetâ€Printed, Thinâ€Film Electronics. Advanced Materials, 2018, 30, e1801852.	21.0	225
20	Enhanced energy harvesting through nanowire based functionally graded interfaces. Nano Energy, 2018, 52, 171-182.	16.0	21
21	Stretchable Electronics: EGaln-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870215.	21.0	2
22	Isolation of Aramid nanofibers for high strength multiscale fiber reinforced composites., 2018,,.		O
23	Design and modeling of a flexible longitudinal zigzag structure for enhanced vibration energy harvesting. Journal of Intelligent Material Systems and Structures, 2017, 28, 367-380.	2.5	48
24	Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4057-4065.	8.0	28
25	Piezoelectric interfaces enabled energy harvesting and tailored damping in fiber composites. Proceedings of SPIE, 2017, , .	0.8	2
26	Role of ZnO nanowire arrays on the impact response of aramid fabrics. Composites Part B: Engineering, 2017, 127, 222-231.	12.0	47
27	Active photo-thermal self-healing of shape memory polyurethanes. Smart Materials and Structures, 2017, 26, 055003.	3. 5	19
28	Isolation of Aramid Nanofibers for High Strength and Toughness Polymer Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11167-11175.	8.0	125
29	Biomimetic Nanostructured Interfaces for Hierarchical Composites. Advanced Materials Interfaces, 2016, 3, 1500404.	3.7	26
30	Conformal Growth of Textured Barium Titanate Films on Patterned Silicon Wafer., 2016,,.		0
31	Optimized Parameters for Synthesis of BaTiO3 Films With High Electromechanical Coupling. , 2016, , .		O
32	Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays. , 2016, , .		2
33	Strain analysis of nanowire interfaces in multiscale composites. Proceedings of SPIE, 2016, , .	0.8	O
34	Energy harvesting from vertically aligned PZT nanowire arrays. Proceedings of SPIE, 2016, , .	0.8	1
35	Self-healing polymers and composites for extreme environments. Journal of Materials Chemistry A, 2016, 4, 17403-17411.	10.3	68
36	Conformal BaTiO ₃ Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis. ACS Applied Materials & Interfaces, 2016, 8, 21446-21453.	8.0	24

#	Article	IF	Citations
37	ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting. Energy and Environmental Science, 2016, 9, 634-643.	30.8	83
38	Lead-free 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ –0.5(Ba _{0.7} Ca _{0.3})TiO <s for energy harvesting. Nanoscale, 2016, 8, 5098-5105.</s 	sub 5.3 <td>b>n9nowires</td>	b> n9 nowires
39	Characterization of lead zirconate titanate microwires using digital image correlation., 2015,,.		1
40	Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Composites Science and Technology, 2015, 107, 75-81.	7.8	83
41	Morphology-Controlled ZnO Nanowire Arrays for Tailored Hybrid Composites with High Damping. ACS Applied Materials & Damping interfaces, 2015, 7, 332-339.	8.0	67
42	Power generation from base excitation of a Kevlar composite beam with ZnO nanowires. Proceedings of SPIE, 2015 , , .	0.8	O
43	Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis. Applied Physics Letters, 2015, 106, .	3.3	21
44	Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires. Composites Part A: Applied Science and Manufacturing, 2015, 76, 326-333.	7.6	34
45	Piezoelectric energy harvesting through shear mode operation. Smart Materials and Structures, 2015, 24, 055005.	3.5	54
46	Vibration Damping Enhancement in Hybrid Carbon Fiber Composites With Zinc Oxide Nanowire Interphase. , 2014, , .		0
47	Toughening response of a crack-tip surrounded by a local elastic gradient. Smart Materials and Structures, 2014, 23, 035009.	3.5	6
48	Toughening mechanism of heterogeneous aliphatic polyurethanes. Polymer, 2014, 55, 2086-2093.	3.8	15
49	Visualization of Particle-Toughening Mechanism in Transparent Polyurethanes. , 2014, , .		O
50	Multi-Inclusion modeling of multiphase piezoelectric composites. Composites Part B: Engineering, 2013, 47, 181-189.	12.0	50
51	Noncontact and simultaneous measurement of the $\langle i \rangle d \langle i \rangle 33$ and $\langle i \rangle d \langle i \rangle 31$ piezoelectric strain coefficients. Applied Physics Letters, 2013, 102, .	3.3	34
52	Shear mode energy harvesting of piezoelectric sandwich beam. Proceedings of SPIE, 2013, , .	0.8	4
53	Modification of Pullout Behavior of Kevlar Fabric by Zinc Oxide Nanowire Reinforcement., 2013,,.		0
54	Electromechanical Characterization of Piezoelectric Shear Actuators. , 2013, , .		2

#	Article	IF	CITATIONS
55	Direct measurement of piezoelectric shear coefficient. Journal of Applied Physics, 2013, 113, 214106.	2.5	22
56	Simultaneous measurement of longitudinal and lateral piezoelectric strain coefficients using digital image correlation. Proceedings of SPIE, $2013, \ldots$	0.8	0
57	Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites. Applied Physics Letters, 2013, 103, .	3.3	41
58	Micromechanics Modeling of Multiphase Piezoelectric Composites. , 2012, , .		0
59	Fracture Modeling of an Embedded Crack in Self-Healing Polymers. , 2012, , .		0