
Kecheng Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5832144/publications.pdf Version: 2024-02-01

KECHENC CAO

#	Article	IF	CITATIONS
1	Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Research, 2022, 15, 1709-1714.	10.4	8
2	Covalent Organic Framework Membrane with Turing Structures for Deacidification of Highly Acidic Solutions. Advanced Functional Materials, 2022, 32, 2108178.	14.9	14
3	Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation. Small Methods, 2022, 6, .	8.6	2
4	Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon, 2021, 171, 221-229.	10.3	23
5	Embedding Heterostructured αâ€MnS/MnO Nanoparticles in Sâ€Doped Carbonaceous Porous Framework as Highâ€Performance Anode for Lithiumâ€ion Batteries. ChemElectroChem, 2021, 8, 918-927.	3.4	21
6	Isotopic Labelling of Confined Carbyne. Angewandte Chemie - International Edition, 2021, 60, 9897-9901.	13.8	6
7	Isotopic Labelling of Confined Carbyne. Angewandte Chemie, 2021, 133, 9985-9989.	2.0	0
8	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	19.5	39
9	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery (Adv. Energy Mater. 35/2021). Advanced Energy Materials, 2021, 11, 2170136.	19.5	0
10	Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. Chemical Science, 2020, 11, 1043-1051.	7.4	21
11	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie, 2020, 132, 22886-22894.	2.0	26
12	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie - International Edition, 2020, 59, 22697-22705.	13.8	163
13	Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nature Chemistry, 2020, 12, 921-928.	13.6	58
14	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie, 2020, 132, 23122-23127.	2.0	0
15	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie - International Edition, 2020, 59, 22922-22927.	13.8	3
16	Innentitelbild: Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 22994-22994.	2.0	0
17	Bimetallic manganese-vanadium functionalized N,S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Applied Catalysis B: Environmental, 2020, 277, 119195.	20.2	76
18	Dynamic Covalent Formation of Concave Disulfide Macrocycles Mechanically Interlocked with Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2020, 59, 18774-18785.	13.8	35

Kecheng Cao

#	Article	IF	CITATIONS
19	Mechanische Verzahnung von einwandigen Kohlenstoffnanoröhren durch dynamischâ€kovalente Bildung von konkaven Disulfidmakrozyklen. Angewandte Chemie, 2020, 132, 18933-18945.	2.0	8
20	Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale. Science Advances, 2020, 6, eaay5849.	10.3	30
21	Selective Chemical Enhancement via Graphene Oxide in Infrared Attenuated Total Reflection Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 25286-25293.	3.1	5
22	Transitionâ€Metal Oxides/Carbides@Carbon Nanotube Composites as Multifunctional Electrocatalysts for Challenging Oxidations and Reductions. Chemistry - A European Journal, 2019, 25, 11098-11104.	3.3	28
23	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 13096-13102.	10.3	22
24	Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution. Analytical and Bioanalytical Chemistry, 2019, 411, 1863-1871.	3.7	10
25	Templated direct growth of ultra-thin double-walled carbon nanotubes. Nanoscale, 2018, 10, 21254-21261.	5.6	16
26	Manganese Vanadium Oxide–N-Doped Reduced Graphene Oxide Composites as Oxygen Reduction and Oxygen Evolution Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 44511-44517.	8.0	62
27	Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam. Nano Letters, 2018, 18, 6334-6339.	9.1	14
28	Extraction of Linear Carbon Chains Unravels the Role of the Carbon Nanotube Host. ACS Nano, 2018, 12, 8477-8484.	14.6	26
29	Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nature Communications, 2018, 9, 3382.	12.8	35
30	Effective charge-discriminated group separation of metal ions under highly acidic conditions using nanodiamond-pillared graphene oxide membrane. Journal of Materials Chemistry A, 2017, 5, 8051-8061.	10.3	40
31	Insight Into the Influence of Ligand Conformation on Extraction Behaviour of Uranium: A Combined Theoretical and Experimental Study. Journal of Nanoscience and Nanotechnology, 2016, 16, 9603-9611.	0.9	0
32	Ligand-exchange mechanism: new insight into solid-phase extraction of uranium based on a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 7214-7223.	2.8	34
33	Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. Journal of Materials Chemistry A, 2014, 2, 1550-1559.	10.3	112
34	Chaos to order: an eco-friendly way to synthesize graphene quantum dots. RSC Advances, 2014, 4, 43160-43165.	3.6	10
35	Strategy and mechanism for controlling the direction of defect evolution in graphene: preparation of high quality defect healed and hierarchically porous graphene. Nanoscale, 2014, 6, 13518-13526.	5.6	26
36	In situ preparation of nitrogen-rich and functional ultramicroporous carbonaceous COFs by "segregated―microwave irradiation. Microporous and Mesoporous Materials, 2014, 197, 148-155.	4.4	45

#	Article	IF	CITATIONS
37	Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. Journal of Hazardous Materials, 2012, 229-230, 321-330.	12.4	146