Xu' Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/583195/publications.pdf

Version: 2024-02-01

52 papers	2,544 citations	28 h-index	197818 49 g-index
59	59	59	1940
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chemistry, 2022, 4, 693-703.	7.8	16
2	Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chemistry, 2022, 4, 1120-1152.	7.8	225
3	Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nature Communications, 2022, 13, 425.	12.8	41
4	Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source. Organic Chemistry Frontiers, 2022, 9, 2634-2639.	4.5	8
5	Electrochemical Synthesis of Sulfonyl Fluorides with Triethylamine Hydrofluoride. Chinese Journal of Chemistry, 2022, 40, 1687-1692.	4.9	24
6	Spirocitromycetin, a Fungal Polyketide with an Antiosteoporotic Pharmacophore. Journal of Natural Products, 2022, 85, 1442-1447.	3.0	1
7	Electroâ€Descriptors for the Performance Prediction of Electroâ€Organic Synthesis. Angewandte Chemie, 2021, 133, 4245-4253.	2.0	13
8	Electroâ€Descriptors for the Performance Prediction of Electroâ€Organic Synthesis. Angewandte Chemie - International Edition, 2021, 60, 4199-4207.	13.8	35
9	Ring-contraction of hantzsch esters and their derivatives to pyrroles <i>via</i> electrochemical extrusion of ethyl acetate out of aromatic rings. Green Chemistry, 2021, 23, 3468-3473.	9.0	10
10	Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia. Organic and Biomolecular Chemistry, 2021, 19, 2468-2472.	2.8	14
11	Aryl-lodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes. Chinese Journal of Organic Chemistry, 2021, 41, 4014.	1.3	6
12	Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon–Carbon Bonds with Chlorine on Demand. Organic Letters, 2021, 23, 3015-3020.	4.6	32
13	Role of Graphite Felt Electrode and Electron Delocalization of Cinnamate Ester in Electrochemical Hydrogenation Reaction. Journal of Physical Chemistry C, 2021, 125, 13871-13879.	3.1	3
14	Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Science Bulletin, 2021, 66, 2412-2429.	9.0	183
15	Electrochemical Tandem Olefination and Hydrogenation Reaction with Ammonia. Journal of Organic Chemistry, 2021, 86, 16016-16025.	3.2	5
16	Metal-free reductive coupling of aliphatic aldehydes/ketones with 4-cyanopyridines: expanded scope and mechanistic studies. Organic Chemistry Frontiers, 2020, 7, 2744-2751.	4.5	24
17	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie - International Edition, 2020, 59, 13962-13967.	13.8	99
18	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie, 2020, 132, 14066-14071.	2.0	20

#	Article	IF	CITATIONS
19	Electrochemical Allylic Hydrodefluorination Reaction Using Gaseous Ammonia as Hydrogen Source. Chinese Journal of Organic Chemistry, 2020, 40, 3873.	1.3	8
20	Experimenting with a Suzuki–Miyaura Cross-Coupling Reaction That Demonstrates Tolerance toward Aldehyde Groups To Teach Undergraduate Students the Fundamentals of Transition-Metal-Catalyzed Reactions. Journal of Chemical Education, 2019, 96, 2672-2675.	2.3	3
21	Electrochemical Approach for Direct C–H Phosphonylation of Unprotected Secondary Amine. Organic Letters, 2019, 21, 7759-7762.	4.6	36
22	Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of $\langle i \rangle N \langle i \rangle$ -Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catalysis, 2019, 9, 10142-10151.	11,2	42
23	Perfluoroalkylative pyridylation of alkenes <i>via</i> 4-cyanopyridine-boryl radicals. Chemical Science, 2019, 10, 2767-2772.	7.4	81
24	Selectivity control of Pd(PMe $<$ sub $>3sub>)<sub>4sub>-catalyzed hydrogenation of internal alkynes to <i>>E</ i>-alkenes by reaction time and water content in formic acid. Dalton Transactions, 2019, 48, 10033-10042.$	3.3	4
25	An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. Chinese Journal of Chemistry, 2019, 37, 570-574.	4.9	18
26	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie, 2019, 131, 1773-1777.	2.0	30
27	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie - International Edition, 2019, 58, 1759-1763.	13.8	87
28	Chemoselective Boraneâ€Catalyzed Hydroarylation of 1,3â€Dienes with Phenols. Angewandte Chemie - International Edition, 2019, 58, 1694-1699.	13.8	54
29	Organocatalytic reductive coupling of aldehydes with 1,1-diarylethylenes using an <i>in situ</i> generated pyridine-boryl radical. Chemical Science, 2018, 9, 3664-3671.	7.4	56
30	Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angewandte Chemie - International Edition, 2018, 57, 5695-5698.	13.8	116
31	Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angewandte Chemie, 2018, 130, 5797-5800.	2.0	35
32	Visibleâ€Lightâ€Induced Difluoropropargylation Reaction with Benzothiazoline as a Reductant. Advanced Synthesis and Catalysis, 2018, 360, 1466-1472.	4.3	17
33	Hydrophosphonodifluoromethylation of Alkenes via Thiyl-Radical/Photoredox Catalysis. Journal of Organic Chemistry, 2018, 83, 578-587.	3.2	31
34	Photoredox C–F Quaternary Annulation Catalyzed by a Strongly Reducing Iridium Species. ACS Catalysis, 2018, 8, 802-806.	11,2	37
35	Substituted Hantzsch Esters as Versatile Radical Reservoirs in Photoredox Reactions. Advanced Synthesis and Catalysis, 2018, 360, 925-931.	4.3	63
36	Application of Hantzsch Ester and Meyer Nitrile in Radical Alkynylation Reactions. Organic Letters, 2018, 20, 6906-6909.	4.6	31

#	Article	IF	CITATIONS
37	Metal-Free Synthesis of C-4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2017, 139, 3904-3910.	13.7	108
38	Hantzsch Esters as Multifunctional Reagents in Visible-Light Photoredox Catalysis. Synlett, 2017, 28, 148-158.	1.8	101
39	Thiyl-Radical-Catalyzed Photoreductive Hydrodifluoroacetamidation of Alkenes with Hantzsch Ester as a Multifunctional Reagent. ACS Catalysis, 2016, 6, 7471-7474.	11.2	45
40	Difluoroalkylation/C–H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 9992-10001.	3.2	54
41	Intermolecular C–H Quaternary Alkylation of Aniline Derivatives Induced by Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 4538-4541.	4.6	37
42	Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. Journal of the American Chemical Society, 2016, 138, 12312-12315.	13.7	159
43	Hantzsch Ester as a Photosensitizer for the Visibleâ€Lightâ€Induced Debromination of Vicinal Dibromo Compounds. Chemistry - A European Journal, 2016, 22, 9546-9550.	3.3	60
44	Synthesis of αâ€Tertiary Amine Derivatives by Intermolecular Hydroamination of Unfunctionalized Alkenes with Sulfamates under Trifluoromethanesulfonic Acid Catalysis. Advanced Synthesis and Catalysis, 2015, 357, 4063-4068.	4.3	15
45	Photoredox Removal of <i>p</i> â€Methoxybenzyl Ether Protecting Group with Hydrogen Peroxide as Terminal Oxidant. Advanced Synthesis and Catalysis, 2015, 357, 589-593.	4.3	22
46	The Catalytic Synthesis of Carboniolamide: The Role of sp 3 Hybridized Oxygen. Synlett, 2014, 25, 2644-2648.	1.8	3
47	A convenient synthesis of bisamides with BF3 etherate as catalyst. Tetrahedron, 2013, 69, 11080-11083.	1.9	15
48	Direct Catalytic Asymmetric Synthesis of Cyclic Aminals from Aldehydes. Journal of the American Chemical Society, 2008, 130, 15786-15787.	13.7	261
49	Asymmetric Hydrogenation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carboxylic Acids Catalyzed by Ruthenium(II) Complexes of Spirobifluorene Diphosphine (SFDP) Ligands. Advanced Synthesis and Catalysis, 2006, 348, 1271-1276.	4.3	47
50	Application of SDP Ligands for Pd-Catalyzed Allylic Alkylation. Advanced Synthesis and Catalysis, 2004, 346, 625-632.	4.3	43
51	Synthesis and Optical Resolution of 9,9â€~-Spirobifluorene-1,1â€~-diol. Organic Letters, 2004, 6, 2381-2383.	4.6	52
52	A CONVENIENT SYNTHESIS OF 2-ALKYL-8-QUINOLINE CARBOXYLIC ACIDS. Synthetic Communications, 2002, 32, 2477-2481.	2.1	13