Paul A Kapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828967/publications.pdf Version: 2024-02-01

		26630	27406
112	14,464	56	106
papers	citations	h-index	g-index
117	117	117	5817
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Where did the Arizonaâ€Plano Go? Protracted Thinning Via Upper―to Lowerâ€Crustal Processes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
2	Hydrothermal events in the Linzizong Group: Implications for Paleogene exhumation and paleoaltimetry of the southern Tibetan Plateau. Earth and Planetary Science Letters, 2022, 583, 117390.	4.4	6
3	Evaluation of patient characteristics, management and outcomes for COVID-19 at district hospitals in the Western Cape, South Africa: descriptive observational study. BMJ Open, 2021, 11, e047016.	1.9	32
4	Regional Exhumation and Tectonic History of the Shanxi Rift and Taihangshan, North China. Tectonics, 2021, 40, e2020TC006416.	2.8	22
5	Climate as the Great Equalizer of Continentalâ€6cale Erosion. Geophysical Research Letters, 2021, 48, e2021GL095008.	4.0	16
6	The Alichur Dome, South Pamir, Western India–Asia Collisional Zone: Detailing the Neogene Shakhdara–Alichur Synâ€collisional Gneissâ€Dome Complex and Connection to Lithospheric Processes. Tectonics, 2020, 39, e2019TC005735.	2.8	27
7	A wind-albedo-wind feedback driven by landscape evolution. Nature Communications, 2020, 11, 96.	12.8	13
8	Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, northwestern China. Tectonophysics, 2020, 796, 228647.	2.2	18
9	Mesozoic Subduction Accretion History in Central Tibet Constrained From Provenance Analysis of the Mugagangri Subduction Complex in the Bangongâ€Nujiang Suture Zone. Tectonics, 2020, 39, e2020TC006144.	2.8	19
10	A Quantitative Modelâ€Based Assessment of Stony Desert Landscape Evolution in the Hami Basin, China: Implications for Plioâ€Pleistocene Dust Production in Eastern Asia. Geophysical Research Letters, 2020, 47, e2020GL090064.	4.0	4
11	Preâ€Oxfordian (>163ÂMa) Ophiolite Obduction in Central Tibet. Geophysical Research Letters, 2020, 47, e2019GL086650.	4.0	19
12	A mid-Cretaceous change from fast to slow exhumation of the western Chinese Altai mountains: A climate driven exhumation signal?. Journal of Asian Earth Sciences, 2020, 197, 104387.	2.3	10
13	Exhumation history of the north-central Shanxi Rift, North China, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 2020, 536, 116146.	4.4	34
14	Resetting Southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 2020, 191, 103194.	3.5	35
15	History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet. Geological Society Special Publication, 2019, 483, 517-554.	1.3	22
16	Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Numerische Mathematik, 2019, 319, 159-254.	1.4	408
17	Structural style and kinematics of the Taihang-Luliangshan fold belt, North China: Implications for the Yanshanian orogeny. Lithosphere, 2019, 11, 767-783.	1.4	29
18	Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir, Tajikistan. Geological Society Special Publication, 2019, 483, 605-630.	1.3	12

#	Article	IF	CITATIONS
19	Controls on Yardang Development and Morphology: 1. Field Observations and Measurements at Ocotillo Wells, California. Journal of Geophysical Research F: Earth Surface, 2018, 123, 694-722.	2.8	17
20	Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 2018, 482, 181-192.	4.4	85
21	Development of stratigraphically controlled, eolian-modified unconsolidated gravel surfaces and yardang fields in the wind-eroded Hami Basin, northwestern China. Bulletin of the Geological Society of America, 2018, 130, 630-648.	3.3	16
22	Cretaceous shortening and exhumation history of the South Pamir terrane. Lithosphere, 2018, 10, 494-511.	1.4	32
23	Gangdese culmination model: Oligocene–Miocene duplexing along the India-Asia suture zone, Lazi region, southern Tibet. Bulletin of the Geological Society of America, 2018, 130, 1355-1376.	3.3	31
24	Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung Zangbo Suture Zone, Sangsang area, southern Tibet. Tectonophysics, 2018, 744, 373-389.	2.2	30
25	The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo) Tj ETQq1 1 0.784 Palaeoclimatology, Palaeoecology, 2018, 506, 30-47.	1314 rgBT 2.3	/Overlock 10 51
26	Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the Indiaâ€Asia collision. Journal of Geophysical Research: Solid Earth, 2017, 122, 808-825.	3.4	47
27	The Yarlung suture mélange, Lopu Range, southern Tibet: Provenance of sandstone blocks and transition from oceanic subduction to continental collision. Gondwana Research, 2017, 48, 15-33.	6.0	36
28	Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 2017, 48, 189-204.	6.0	73
29	Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage. Bulletin of the Geological Society of America, 2017, 129, 570-581.	3.3	22
30	Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet. Tectonics, 2017, 36, 108-136.	2.8	49
31	Tibetan Magmatism Database. Geochemistry, Geophysics, Geosystems, 2017, 18, 4229-4234.	2.5	46
32	Yardang geometries in the Qaidam Basin and their controlling factors. Geomorphology, 2017, 299, 142-151.	2.6	18
33	Birth, life, and demise of the Andean–synâ€collisional Gissar arc: Late Paleozoic tectonoâ€magmaticâ€metamorphic evolution of the southwestern Tian Shan, Tajikistan. Tectonics, 2017, 36, 1861-1912.	2.8	26
34	Reply to comment by Z. Yi et al. on "Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the Indiaâ€Asia collision― Journal of Geophysical Research: Solid Earth, 2017, 122, 4859-4863.	3.4	6
35	An exploration of the knowledge, attitudes and beliefs of Xhosa men concerning traditional circumcision. African Journal of Primary Health Care and Family Medicine, 2017, 9, e1-e8.	0.8	12
36	Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature Communications, 2016, 7, 12390.	12.8	80

#	Article	IF	CITATIONS
37	High-pressure Tethyan Himalaya rocks along the India-Asia suture zone in southern Tibet. Lithosphere, 2016, 8, 574-582.	1.4	37
38	Magmatic history and crustal genesis of western South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. , 2016, 12, 1532-1555.		87
39	Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 2016, 262, 320-333.	1.4	177
40	Along-strike diachroneity in deposition of the Kailas Formation in central southern Tibet: Implications for Indian slab dynamics. , 2016, 12, 1198-1223.		51
41	Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Bulletin of the Geological Society of America, 2016, 128, 944-956.	3.3	123
42	Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth and Planetary Science Letters, 2016, 435, 105-114.	4.4	99
43	Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 2015, 27, 387-411.	2.7	130
44	Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the Indiaâ€Asia collision?. Journal of Geophysical Research: Solid Earth, 2015, 120, 42-66.	3.4	38
45	What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics, 2015, 34, 594-622.	2.8	50
46	Paleolatitudes of the <scp>T</scp> ibetan <scp>H</scp> imalaya from primary and secondary magnetizations of <scp>J</scp> urassic to <scp>L</scp> ower <scp>C</scp> retaceous sedimentary rocks. Geochemistry, Geophysics, Geosystems, 2015, 16, 77-100.	2.5	51
47	Structural Analysis of the Hero Range in the Qaidam Basin, Northwestern China, Using Integrated UAV, Terrestrial LiDAR, Landsat 8, and 3-D Seismic Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4581-4591.	4.9	15
48	Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 2015, 415, 142-153.	4.4	100
49	From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China. Geology, 2015, 43, 835-838.	4.4	39
50	Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 2015, 43, 475-478.	4.4	129
51	Reply to comment by W. Liu and B. Xia on "Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys oceanâ€. Lithos, 2015, 212-215, 457-461.	1.4	4
52	Cyclical orogenic processes in the Cenozoic central Andes. , 2015, , .		37
53	Along-strike variations in crustal seismicity and modern lithospheric structure of the central Andean forearc. , 2015, , .		3
54	Southern Tibetan Oligocene–Miocene adakites: A record of Indian slab tearing. Lithos, 2014, 210-211, 209-223.	1.4	62

#	Article	IF	CITATIONS
55	Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: Response to slab dynamics and erosion. Geology, 2014, 42, 443-446.	4.4	82
56	Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet. , 2014, , .		28
57	Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous–early Cenozoic shortening within a passive roof thrust system?. , 2014, , .		17
58	Paleoceneâ€Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial Indiaâ€Asia collision. Tectonics, 2014, 33, 824-849.	2.8	386
59	Age and geochemistry of western Hoh-Xil–Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean. Lithos, 2014, 190-191, 328-348.	1.4	103
60	Metamorphism of the Amdo metamorphic complex, <scp>T</scp> ibet: implications for the Jurassic tectonic evolution of the Bangong suture zone. Journal of Metamorphic Geology, 2013, 31, 705-727.	3.4	53
61	Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. , 2013, 9, 1766-1782.		57
62	Provenance analysis of the Mesozoic Hohâ€Xilâ€Songpanâ€Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleoâ€Tethys Ocean. Tectonics, 2013, 32, 34-48.	2.8	221
63	Wind as the primary driver of erosion in the Qaidam Basin, China. Earth and Planetary Science Letters, 2013, 374, 1-10.	4.4	78
64	Climatic and tectonic controls on sedimentation and erosion during the Pliocene-Quaternary in the Qaidam Basin (China). Bulletin of the Geological Society of America, 2013, 125, 833-856.	3.3	72
65	Evidence for constriction and Pliocene acceleration of eastâ€west extension in the North Lunggar rift region of west central Tibet. Tectonics, 2013, 32, 1454-1479.	2.8	49
66	Late Cenozoic evolution of the Lunggar extensional basin, Tibet: Implications for basin growth and exhumation in hinterland plateaus. Bulletin of the Geological Society of America, 2013, 125, 343-358.	3.3	23
67	Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 2012, 40, 187-190.	4.4	212
68	U–Pb geochronology of basement rocks in central Tibet and paleogeographic implications. Journal of Asian Earth Sciences, 2012, 43, 23-50.	2.3	171
69	Major Miocene exhumation by faultâ€propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. Tectonics, 2012, 31, .	2.8	31
70	Reply to comment by Ali and Aitchison on "Restoration of Cenozoic deformation in Asia, and the size of Greater India― Tectonics, 2012, 31, .	2.8	4
71	Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Bulletin of the Geological Society of America, 2011, 123, 1337-1362.	3.3	203
72	Detrital zircon geochronology of preâ€Tertiary strata in the Tibetanâ€Himalayan orogen. Tectonics, 2011, 30, .	2.8	626

Paul A Kapp

#	Article	IF	CITATIONS
73	Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics, 2011, 30, .	2.8	224
74	Cenozoic anatexis and exhumation of Tethyan Sequence rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics, 2011, 501, 28-40.	2.2	35
75	Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 2011, 39, 1031-1034.	4.4	222
76	Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Bulletin of the Geological Society of America, 2011, 123, 585-600.	3.3	229
77	Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today, 2011, 21, 4-10.	2.0	593
78	Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophysical Journal International, 2010, 182, 1189-1198.	2.4	224
79	Cenozoic crustal extension in southeastern Arizona and implications for models of core-complex development. Tectonophysics, 2010, 488, 174-190.	2.2	15
80	Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet. Tectonics, 2010, 29, n/a-n/a.	2.8	47
81	Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2009, 2, 251-257.	12.9	598
82	Phaseâ€equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite–rutile equilibria. Journal of Metamorphic Geology, 2009, 27, 509-521.	3.4	45
83	Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration. Earth and Planetary Science Letters, 2009, 279, 242-254.	4.4	72
84	The late Miocene through present paleoelevation history of southwestern Tibet. Numerische Mathematik, 2009, 309, 1-42.	1.4	147
85	Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. Journal of Asian Earth Sciences, 2008, 33, 323-336.	2.3	64
86	Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 2008, 36, 7.	4.4	134
87	Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 2008, 36, 351.	4.4	449
88	Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 2008, 36, 336.	4.4	1
89	The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. Bulletin of the Geological Society of America, 2007, 119, 31-48.	3.3	124
90	Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Bulletin of the Geological Society of America, 2007, 119, 917-933.	3.3	788

#	Article	IF	CITATIONS
91	Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Bulletin of the Geological Society of America, 2007, 119, 654-680.	3.3	219
92	Cretaceous–Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics, 2007, 433, 15-37.	2.2	174
93	High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 2007, 253, 389-401.	4.4	287
94	Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters, 2007, 254, 28-38.	4.4	160
95	Cretaceousâ€Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics, 2007, 26, .	2.8	127
96	Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Research, 2007, 19, 361-378.	2.7	224
97	Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau. Journal of Sedimentary Research, 2007, 77, 809-825.	1.6	133
98	The Gangdese retroarc thrust belt revealed. GSA Today, 2007, 17, 4.	2.0	173
99	Tibetan basement rocks near Amdo reveal "missing―Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 2006, 34, 505.	4.4	372
100	Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Bulletin of the Geological Society of America, 2005, 117, 865.	3.3	675
101	Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research, 2005, 110, .	3.3	149
102	Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24, n/a-n/a.	2.8	523
103	Indian punch rifts Tibet. Geology, 2004, 32, 993.	4.4	129
104	Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 2003, 22, n/a-n/a.	2.8	390
105	Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 2003, 22, n/a-n/a.	2.8	173
106	Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 2003, 22, n/a-n/a.	2.8	351
107	Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system. Bulletin of the Geological Society of America, 2002, 114, 428-447.	3.3	182
108	Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 2001, 192, 423-438.	4.4	284

#	Article	IF	CITATIONS
109	Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 2000, 28, 451.	4.4	155
110	Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 2000, 28, 19.	4.4	306
111	Significant late Neogene east-west extension in northern Tibet. Geology, 1999, 27, 787.	4.4	137
112	Range-front fault scarps of the Sierra El Mayor, Baja California: Formed above an active low-angle normal fault?. Geology, 1999, 27, 247.	4.4	63