## Roberta Marchetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828838/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition. Carbohydrate Polymers, 2022, 277, 118839. | 10.2 | 9         |
| 2  | Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide.<br>Carbohydrate Polymers, 2022, 277, 118885.                               | 10.2 | 49        |
| 3  | Conformationally Constrained Sialyl Analogues as New Potential Binders of h D22. ChemBioChem, 2022, 23, .                                                                    | 2.6  | 3         |
| 4  | Role of EPS in mitigation of plant abiotic stress: The case of Methylobacterium extorquens PA1.<br>Carbohydrate Polymers, 2022, 295, 119863.                                 | 10.2 | 3         |
| 5  | Investigation of protein-ligand complexes by ligand-based NMR methods. Carbohydrate Research, 2021, 503, 108313.                                                             | 2.3  | 19        |
| 6  | Solving the structural puzzle of bacterial glycome. Current Opinion in Structural Biology, 2021, 68, 74-83.                                                                  | 5.7  | 10        |
| 7  | Chemical Synthesis of Sialyl <i>N</i> â€Glycans and Analysis of Their Recognition by Neuraminidase.<br>Angewandte Chemie - International Edition, 2021, 60, 24686-24693.     | 13.8 | 6         |
| 8  | Chemical Synthesis of Sialyl Nâ€Glycans and Analysis of Their Recognition by Neuraminidase.<br>Angewandte Chemie, 2021, 133, 24891.                                          | 2.0  | 0         |
| 9  | Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp.<br>animalis. Frontiers in Immunology, 2021, 12, 744184.                      | 4.8  | 10        |
| 10 | Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. IScience, 2021, 24, 101998.                                                           | 4.1  | 8         |
| 11 | Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: toward the shape of specific inhibitors. RSC Chemical Biology, 2021, 2, 1618-1630.              | 4.1  | 6         |
| 12 | Characterization of Natural and Synthetic Sialoglycans Targeting the Hemagglutinin-Neuraminidase of Mumps Virus. Frontiers in Chemistry, 2021, 9, 711346.                    | 3.6  | 0         |
| 13 | Semisynthetic Isomers of Fucosylated Chondroitin Sulfate Polysaccharides with Fucosyl Branches at<br>a Non-Natural Site. Biomacromolecules, 2021, 22, 5151-5161.             | 5.4  | 5         |
| 14 | Characterisation of the Dynamic Interactions between Complex <i>N</i> â€Glycans and Human CD22.<br>ChemBioChem, 2020, 21, 129-140.                                           | 2.6  | 16        |
| 15 | Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. IScience, 2020, 23, 101231.                                                                              | 4.1  | 24        |
| 16 | Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Scientific<br>Reports, 2020, 10, 1589.                                              | 3.3  | 19        |
| 17 | Exploring the fascinating world of sialoglycans in the interplay with Siglecs. Carbohydrate<br>Chemistry, 2020, , 31-55.                                                     | 0.3  | 3         |
| 18 | The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie -<br>International Edition, 2019, 58, 18697-18702.                                | 13.8 | 29        |

Roberta Marchetti

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie, 2019, 131,<br>18870-18875.                                                                                                                              | 2.0  | 2         |
| 20 | Human Macrophage Galactoseâ€Type Lectin (MGL) Recognizes the Outer Core of <i>Escherichia coli</i> Lipooligosaccharide. ChemBioChem, 2019, 20, 1778-1782.                                                                                           | 2.6  | 21        |
| 21 | Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chemical Biology, 2018, 13, 2106-2113.                                                                                                                                          | 3.4  | 18        |
| 22 | Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance. Carbohydrate Polymers, 2018, 201, 293-299.                                                                                                                        | 10.2 | 17        |
| 23 | <i>Rhodopseudomonas palustris</i> Strain CGA009 Produces an O-Antigen Built up by a C-4-Branched<br>Monosaccharide: Structural and Conformational Studies. Organic Letters, 2018, 20, 3656-3660.                                                    | 4.6  | 3         |
| 24 | Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and<br>its characterizations using novel Diffusion-ordered NMR spectroscopy. International Journal of<br>Biological Macromolecules, 2017, 103, 744-750. | 7.5  | 19        |
| 25 | A Comprehensive Study of the Interaction between Peptidoglycan Fragments and the Extracellular<br>Domain of <i>Mycobacterium tuberculosis</i> Ser/Thr Kinase PknB. ChemBioChem, 2017, 18, 2094-2098.                                                | 2.6  | 12        |
| 26 | Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nature Communications, 2017, 8, 115.                                                                        | 12.8 | 42        |
| 27 | Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies. Carbohydrate<br>Research, 2016, 429, 23-28.                                                                                                                      | 2.3  | 4         |
| 28 | "Rules of Engagement―of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen, 2016, 5, 274-296.                                                                         | 1.9  | 62        |
| 29 | A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in <i>Bradyrhizobium</i> spp. During Legume Symbiosis. Molecular Plant-Microbe Interactions, 2016, 29, 447-457.                                                         | 2.6  | 29        |
| 30 | NMR analysis of the binding mode of two fungal endo-β-1,4-mannanases from GH5 and GH26 families.<br>Organic and Biomolecular Chemistry, 2016, 14, 314-322.                                                                                          | 2.8  | 5         |
| 31 | Continuous degradation of maltose: improvement in stability and catalytic properties of maltase<br>(α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess and Biosystems<br>Engineering, 2015, 38, 631-638.            | 3.4  | 21        |
| 32 | NMR as a Tool to Unveil the Molecular Basis of Glycan-mediated Host–Pathogen Interactions. RSC<br>Drug Discovery Series, 2015, , 21-37.                                                                                                             | 0.3  | 1         |
| 33 | <i>Burkholderia pseudomallei</i> Capsular Polysaccharide Recognition by a Monoclonal Antibody<br>Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis. ACS Chemical<br>Biology, 2015, 10, 2295-2302.                 | 3.4  | 36        |
| 34 | Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial<br>Cell Envelope. Journal of Biological Chemistry, 2015, 290, 21042-21053.                                                                  | 3.4  | 45        |
| 35 | The antibacterial toxin colicin <scp>N</scp> binds to the inner core of lipopolysaccharide and close to its translocator protein. Molecular Microbiology, 2014, 92, 440-452.                                                                        | 2.5  | 40        |
| 36 | Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nature Communications, 2014, 5, 5106.                                                                                                | 12.8 | 88        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique<br>sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of<br>America, 2014, 111, E404-13.                                | 7.1  | 271       |
| 38 | Unraveling the Interaction between the LPS Oâ€Antigen of <i>Burkholderia anthina</i> and the 5D8<br>Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and<br>Molecular Modeling Methods. ChemBioChem, 2013, 14, 1485-1493. | 2.6  | 8         |
| 39 | NMR Spectroscopic Analysis Reveals Extensive Binding Interactions of Complex Xyloglucan<br>Oligosaccharides with the <i>Cellvibrio japonicus</i> Glycoside Hydrolase Family 31 I±â€Xylosidase.<br>Chemistry - A European Journal, 2012, 18, 13395-13404.          | 3.3  | 25        |
| 40 | Structural Study of Binding of αâ€Mannosides to Mannanâ€Binding Lectins. European Journal of Organic<br>Chemistry, 2012, 2012, 5275-5281.                                                                                                                         | 2.4  | 4         |
| 41 | Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide.<br>Clycobiology, 2012, 22, 1387-1398.                                                                                                                                | 2.5  | 31        |
| 42 | Chemical Basis of Peptidoglycan Discrimination by PrkC, a Key Kinase Involved in Bacterial<br>Resuscitation from Dormancy. Journal of the American Chemical Society, 2011, 133, 20676-20679.                                                                      | 13.7 | 89        |
| 43 | X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Biochemical Journal, 2011, 435, 33-41.                                                                                                | 3.7  | 48        |
| 44 | The structure of the carbohydrate backbone of the lipooligosaccharide from an alkaliphilic<br>Halomonas sp Carbohydrate Research, 2010, 345, 1971-1975.                                                                                                           | 2.3  | 8         |