
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. Journal of Experimental Medicine, 2022, 219, .	8.5	11
2	TFEB signaling attenuates NLRP3â€driven inflammatory responses in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2131-2146.	5.7	19
3	TRAF2, an Innate Immune Sensor, Reciprocally Regulates Mitophagy and Inflammation to Maintain Cardiac Myocyte Homeostasis. JACC Basic To Translational Science, 2022, 7, 223-243.	4.1	11
4	Autophagy in Atherosclerosis: Not All Foam Cells Are Created Equal. Circulation Research, 2022, 130, 848-850.	4.5	3
5	SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	28
6	Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response. Autophagy, 2021, 17, 3740-3752.	9.1	54
7	Long COVID, a comprehensive systematic scoping review. Infection, 2021, 49, 1163-1186.	4.7	180
8	Subcutaneous Adipose Tissue Metabolic Function and Insulin Sensitivity in People With Obesity. Diabetes, 2021, 70, 2225-2236.	0.6	13
9	Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity, 2021, 54, 2057-2071.e6.	14.3	55
10	Autophagy Signaling and Oxidative Stress in Thoracic Aortic Aneurysms. JACC Basic To Translational Science, 2021, 6, 731-733.	4.1	1
11	Neutrophil DREAM Promotes Neutrophil Recruitment in Vascular Inflammation Via Nuclear Factor Kappa B-Dependent and Independent Mechanisms. Blood, 2021, 138, 435-435.	1.4	0
12	Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. Journal of Allergy and Clinical Immunology, 2020, 145, 502-517.e5.	2.9	47
13	MED19 Regulates Adipogenesis and Maintenance of White Adipose Tissue Mass by Mediating PPARÎ ³ -Dependent Gene Expression. Cell Reports, 2020, 33, 108228.	6.4	18
14	Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opinion on Therapeutic Targets, 2020, 24, 825-844.	3.4	8
15	Acetyl-CoA Derived from Hepatic Peroxisomal β-Oxidation Inhibits Autophagy and Promotes Steatosis via mTORC1 Activation. Molecular Cell, 2020, 79, 30-42.e4.	9.7	109
16	TFEB is a master regulator of tumor-associated macrophages in breast cancer. , 2020, 8, e000543.		50
17	High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nature Metabolism, 2020, 2, 110-125.	11.9	85
18	Low dose chloroquine decreases insulin resistance in human metabolic syndrome but does not reduce carotid intima-media thickness. Diabetology and Metabolic Syndrome, 2019, 11, 61.	2.7	15

#	Article	IF	CITATIONS
19	TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Science Signaling, 2019, 12, .	3.6	53
20	Functional Characterization of LIPA (Lysosomal Acid Lipase) Variants Associated With Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2480-2491.	2.4	13
21	Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages. Journal of Leukocyte Biology, 2019, 106, 803-814.	3.3	22
22	Assessment of Copper Nanoclusters for Accurate in Vivo Tumor Imaging and Potential for Translation. ACS Applied Materials & amp; Interfaces, 2019, 11, 19669-19678.	8.0	37
23	p62/ <i>SQSTM1</i> and Selective Autophagy in Cardiometabolic Diseases. Antioxidants and Redox Signaling, 2019, 31, 458-471.	5.4	68
24	Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nature Immunology, 2019, 20, 29-39.	14.5	537
25	TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight, 2019, 4, .	5.0	39
26	Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. Journal of Clinical Investigation, 2019, 129, 694-711.	8.2	95
27	TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy, 2018, 14, 724-726.	9.1	120
28	Classical and alternative roles for autophagy in lipid metabolism. Current Opinion in Lipidology, 2018, 29, 203-211.	2.7	73
29	TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Autophagy, 2018, 14, 1959-1975.	9.1	23
30	PPARγ Deficiency Suppresses the Release of IL-1β and IL-1α in Macrophages via a Type 1 IFN–Dependent Mechanism. Journal of Immunology, 2018, 201, 2054-2069.	0.8	20
31	Target acquired: Selective autophagy in cardiometabolic disease. Science Signaling, 2017, 10, .	3.6	56
32	Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment. Oncolmmunology, 2017, 6, e1312042.	4.6	39
33	Linking lysosomal acid lipase insufficiency to the development of cryptogenic cirrhosis. Atherosclerosis, 2017, 262, 140-142.	0.8	3
34	Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications, 2017, 8, 15750.	12.8	258
35	Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination. Cell Reports, 2017, 19, 188-202.	6.4	110
36	N-3 PUFAs induce inflammatory tolerance by formation of KEAP1-containing SQSTM1/p62-bodies and activation of NFE2L2. Autophagy, 2017, 13, 1664-1678.	9.1	43

#	Article	IF	CITATIONS
37	Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy, 2017, 13, 1952-1968.	9.1	131
38	CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2156-2160.	2.4	30
39	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	14.3	50
40	Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Theranostics, 2017, 7, 377-389.	10.0	19
41	Modulating Oxysterol Sensing to Control Macrophage Apoptosis and Atherosclerosis. Circulation Research, 2016, 119, 1258-1261.	4.5	8
42	Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. Journal of Lipid Research, 2016, 57, 1006-1016.	4.2	45
43	Options to consider when treating lysosomal acid lipase deficiency. Journal of Clinical Lipidology, 2016, 10, 1280-1281.	1.5	5
44	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
45	Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis. Science Signaling, 2016, 9, ra2.	3.6	83
46	Degradation and beyond. Current Opinion in Lipidology, 2015, 26, 394-404.	2.7	30
47	Can the DNA Damage Response Be Harnessed to Modulate Atherosclerotic Plaque Phenotype?. Circulation Research, 2015, 116, 770-773.	4.5	5
48	Hypoxia in Plaque Macrophages. Circulation Research, 2014, 115, 817-820.	4.5	11
49	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
50	Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends in Endocrinology and Metabolism, 2014, 25, 225-234.	7.1	93
51	Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1942-1952.	2.4	187
52	Interleukins and Atherosclerosis: A Dysfunctional Family Grows. Cell Metabolism, 2013, 18, 614-616.	16.2	12
53	Inhibiting Adipose Tissue Lipogenesis Reprograms Thermogenesis and PPARÎ ³ Activation to Decrease Diet-Induced Obesity. Cell Metabolism, 2012, 16, 189-201.	16.2	205
54	The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 2012, 36, 933-946.	14.3	241

#	Article	IF	CITATIONS
55	Autophagy Links Inflammasomes to Atherosclerotic Progression. Cell Metabolism, 2012, 15, 534-544.	16.2	509
56	Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress. Journal of Biological Chemistry, 2011, 286, 30949-30961.	3.4	55
57	p53 is required for chloroquine-induced atheroprotection but not insulin sensitization. Journal of Lipid Research, 2010, 51, 1738-1746.	4.2	30
58	Getting away from glucose: stop sugarcoating diabetes. Nature Medicine, 2009, 15, 372-373.	30.7	7
59	Insulin Resistance and Atherosclerosis. Endocrinology and Metabolism Clinics of North America, 2008, 37, 603-621.	3.2	82
60	Role of Caveolin-1 in the Modulation of Lipolysis and Lipid Droplet Formation. Diabetes, 2004, 53, 1261-1270.	0.6	278
61	Combined Loss of INK4a and Caveolin-1 Synergistically Enhances Cell Proliferation and Oncogene-induced Tumorigenesis. Journal of Biological Chemistry, 2004, 279, 24745-24756.	3.4	66
62	Caveolin-1 Null (â^'/â^') Mice Show Dramatic Reductions in Life Spanâ€. Biochemistry, 2003, 42, 15124-15131.	2.5	134
63	Loss of Caveolin-1 Gene Expression Accelerates the Development of Dysplastic Mammary Lesions in Tumor-Prone Transgenic Mice. Molecular Biology of the Cell, 2003, 14, 1027-1042.	2.1	138
64	Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology - Cell Physiology, 2003, 285, C222-C235.	4.6	308
65	Caveolin-2-Deficient Mice Show Evidence of Severe Pulmonary Dysfunction without Disruption of Caveolae. Molecular and Cellular Biology, 2002, 22, 2329-2344.	2.3	280
66	Intracellular Retention of Glycosylphosphatidyl Inositol-Linked Proteins in Caveolin-Deficient Cells. Molecular and Cellular Biology, 2002, 22, 3905-3926.	2.3	82
67	Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities. Journal of Biological Chemistry, 2002, 277, 8635-8647.	3.4	494
68	Molecular Cloning and Developmental Expression of the Caveolin Gene Family in the AmphibianXenopus laevisâ€,‡. Biochemistry, 2002, 41, 7914-7924.	2.5	24
69	Caveolin-1/3 Double-Knockout Mice Are Viable, but Lack Both Muscle and Non-Muscle Caveolae, and Develop a Severe Cardiomyopathic Phenotype. American Journal of Pathology, 2002, 160, 2207-2217.	3.8	192
70	Caveolin-1 Mutations (P132L and Null) and the Pathogenesis of Breast Cancer. American Journal of Pathology, 2002, 161, 1357-1369.	3.8	176
71	Caveolae: From Cell Biology to Animal Physiology. Pharmacological Reviews, 2002, 54, 431-467.	16.0	852
72	Caveolin-1-deficient Mice Show Accelerated Mammary Gland Development During Pregnancy, Premature Lactation, and Hyperactivation of the Jak-2/STAT5a Signaling Cascade. Molecular Biology of the Cell, 2002, 13, 3416-3430.	2.1	107

#	Article	IF	CITATIONS
73	Caveolins and Caveolae: Molecular and Functional Relationships. Experimental Cell Research, 2001, 271, 36-44.	2.6	111
74	Caveolae and caveolin-3 in muscular dystrophy. Trends in Molecular Medicine, 2001, 7, 435-441.	6.7	144
75	Emerging Themes in Lipid Rafts and Caveolae. Cell, 2001, 106, 403-411.	28.9	557
76	Evidence That Myc Isoforms Transcriptionally Repress Caveolin-1 Gene Expression via an INR-Dependent Mechanismâ€. Biochemistry, 2001, 40, 3354-3362.	2.5	51
77	Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. American Journal of Physiology - Cell Physiology, 2001, 280, C1204-C1214.	4.6	65
78	Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. American Journal of Physiology - Cell Physiology, 2001, 281, C1241-C1250.	4.6	72
79	Caveolin-I, a putative tumour suppressor gene. Biochemical Society Transactions, 2001, 29, 494-499.	3.4	112
80	Caveolae-deficient Endothelial Cells Show Defects in the Uptake and Transport of Albumin in Vivo. Journal of Biological Chemistry, 2001, 276, 48619-48622.	3.4	289
81	Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. Journal of Biological Chemistry, 2001, 276, 38121-38138.	3.4	957
82	Caveolin-1 Regulates Transforming Growth Factor (TGF)-β/SMAD Signaling through an Interaction with the TGF-β Type I Receptor. Journal of Biological Chemistry, 2001, 276, 6727-6738.	3.4	585
83	Caveolin-deficient mice: insights into caveolar function human disease. Journal of Clinical Investigation, 2001, 108, 1553-1561.	8.2	195
84	Caveolin-1 Inhibits Epidermal Growth Factor-stimulated Lamellipod Extension and Cell Migration in Metastatic Mammary Adenocarcinoma Cells (MTLn3). Journal of Biological Chemistry, 2000, 275, 20717-20725.	3.4	109
85	Caveolin-1 Expression Is Down-Regulated in Cells Transformed by the Human Papilloma Virus in a p53-Dependent Manner. Replacement of Caveolin-1 Expression Suppresses HPV-Mediated Cell Transformationâ€. Biochemistry, 2000, 39, 13916-13924.	2.5	84
86	p42/44 MAP Kinase-dependent and -independent Signaling Pathways Regulate Caveolin-1 Gene Expression. Journal of Biological Chemistry, 1999, 274, 32333-32341.	3.4	144
87	Angiogenesis Activators and Inhibitors Differentially Regulate Caveolin-1 Expression and Caveolae Formation in Vascular Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 15781-15785.	3.4	151
88	Regulation of cAMP-mediated Signal Transduction via Interaction of Caveolins with the Catalytic Subunit of Protein Kinase A. Journal of Biological Chemistry, 1999, 274, 26353-26360.	3.4	157