List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5828055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular and humoral functional responses after BNT162b2 mRNA vaccination differ longitudinally between naive and subjects recovered from COVID-19. Cell Reports, 2022, 38, 110235.	6.4	35
2	HIV-reservoir size is not affected either by HCV coinfection or by direct acting antivirals (DAAs) therapy. Scientific Reports, 2022, 12, 5095.	3.3	4
3	High Plasma sTNF-R1 Level Is Related to Loss of Natural HIV Control in Long-Term Elite Controllers. Frontiers in Cellular and Infection Microbiology, 2022, 12, 858872.	3.9	1
4	COVID-19 in people living with HIV: A multicenter case-series study. International Journal of Infectious Diseases, 2021, 102, 310-315.	3.3	41
5	Adherence to a Supplemented Mediterranean Diet Drives Changes in the Gut Microbiota of HIV-1-Infected Individuals. Nutrients, 2021, 13, 1141.	4.1	12
6	HIV-DNA content in pTfh cells is associated with residual viremia in elite controllers. Aids, 2021, 35, 393-398.	2.2	1
7	DBP rs7041 and DHCR7 rs3829251 are Linked to CD4+ Recovery in HIV Patients on Antiretroviral Therapy. Frontiers in Pharmacology, 2021, 12, 773848.	3.5	Ο
8	NÃVEL DE ESTRESSE PERCEBIDO E INSTABILIDADE GENÃ "MICA ENTRE OS USUÃRIOS DE ACADEMIA. Revista Jovens Pesquisadores, 2021, 11, 03-11.	0.1	0
9	Persistent HIVâ€controllers are more prone to spontaneously clear HCV: a retrospective cohort study. Journal of the International AIDS Society, 2020, 23, e25607.	3.0	2
10	Elite controllers: A heterogeneous group of HIV-infected patients. Virulence, 2020, 11, 889-897.	4.4	17
11	Both HCV Infection and Elevated Liver Stiffness Significantly Impacts on Several Parameters of T-Cells Homeostasis in HIV-Infected Patients. Journal of Clinical Medicine, 2020, 9, 2978.	2.4	2
12	Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control. Journal of Molecular Medicine, 2020, 98, 1093-1105.	3.9	3
13	Liver Stiffness Hinders Normalization of Systemic Inflammation and Endothelial Activation after Hepatitis C Virus (HCV) Eradication in HIV/HCV Coinfected Patients. Vaccines, 2020, 8, 323.	4.4	5
14	CD4 recovery is associated with genetic variation in IFNÎ ³ and IL19 genes. Antiviral Research, 2019, 170, 104577.	4.1	7
15	A high mucosal blocking score is associated with HIV protection. Aids, 2019, 33, 411-423.	2.2	4
16	IL7RA rs6897932 Polymorphism is Associated with Better CD4+ T-Cell Recovery in HIV Infected Patients Starting Combination Antiretroviral Therapy. Biomolecules, 2019, 9, 233.	4.0	9
17	Genetic variation in CCR2 and CXCL12 genes impacts on CD4 restoration in patients initiating cART with advanced immunesupression. PLoS ONE, 2019, 14, e0214421.	2.5	11
18	HCV-coinfection is related to an increased HIV-1 reservoir size in cART-treated HIV patients: a cross-sectional study. Scientific Reports, 2019, 9, 5606.	3.3	22

JOSé M BENITO

#	Article	IF	CITATIONS
19	Lower expression of plasma-derived exosome miR-21 levels in HIV-1 elite controllers with decreasing CD4 T cell count. Journal of Microbiology, Immunology and Infection, 2019, 52, 667-671.	3.1	14
20	Proteomic Profile Associated With Loss of Spontaneous Human Immunodeficiency Virus Type 1 Elite Control. Journal of Infectious Diseases, 2019, 219, 867-876.	4.0	23
21	A Knockout IFNL4 Variant Is Associated With Protection From Sexually Transmitted HIV-1 Infection. Journal of Infectious Diseases, 2019, 219, 772-776.	4.0	5
22	Class-modeling analysis reveals T-cell homeostasis disturbances involved in loss of immune control in elite controllers. BMC Medicine, 2018, 16, 30.	5.5	19
23	Factors Leading to the Loss of Natural Elite Control of HIV-1 Infection. Journal of Virology, 2018, 92, .	3.4	58
24	Mitochondrial haplogroup H is related to CD4+ T cell recovery in HIV infected patients starting combination antiretroviral therapy. Journal of Translational Medicine, 2018, 16, 343.	4.4	6
25	Role of APOBEC3H in the Viral Control of HIV Elite Controller Patients. International Journal of Medical Sciences, 2018, 15, 95-100.	2.5	2
26	CD32 Expression is not Associated to HIV-DNA content in CD4 cell subsets of individuals with Different Levels of HIV Control. Scientific Reports, 2018, 8, 15541.	3.3	13
27	High Plasma Levels of sTNF-R1 and CCL11 Are Related to CD4+ T-Cells Fall in Human Immunodeficiency Virus Elite Controllers With a Sustained Virologic Control. Frontiers in Immunology, 2018, 9, 1399.	4.8	3
28	Peering into the HIV reservoir. Reviews in Medical Virology, 2018, 28, e1981.	8.3	21
29	Expression of PD-1 and Tim-3 markers of T-cell exhaustion is associated with CD4 dynamics during the course of untreated and treated HIV infection. PLoS ONE, 2018, 13, e0193829.	2.5	31
30	Both Hepatitis C Virus-Specific T Cell Responses and <i>IL28B</i> rs12979860 Single-Nucleotide Polymorphism Genotype Influence Antihepatitis C Virus Treatment Outcome in Patients with Chronic Hepatitis C. Journal of Interferon and Cytokine Research, 2017, 37, 278-286.	1.2	1
31	Peripheral T follicular helper Cells Make a Difference in HIV Reservoir Size between Elite Controllers and Patients on Successful cART. Scientific Reports, 2017, 7, 16799.	3.3	25
32	HCV coinfection contributes to HIV pathogenesis by increasing immune exhaustion in CD8 T-cells. PLoS ONE, 2017, 12, e0173943.	2.5	17
33	Balance between activation and regulation of HIV-specific CD8+ T-cell response after modified vaccinia Ankara B therapeutic vaccination. Aids, 2016, 30, 553-562.	2.2	6
34	Rate and predictors of progression in elite and viremic HIV-1 controllers. Aids, 2016, 30, 1209-1220.	2.2	69
35	<i>IL15</i> polymorphism is associated with advanced fibrosis, inflammationâ€related biomarkers and virological response in human immunodeficiency virus/hepatitis C virus coinfection. Liver International, 2016, 36, 1258-1266.	3.9	5
36	Relationship of TRIM5 and TRIM22 polymorphisms with liver disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. Journal of Translational Medicine, 2016, 14, 257.	4.4	20

#	Article	IF	CITATIONS
37	Analysis of Non-AIDS-Defining Events in HIV Controllers. Clinical Infectious Diseases, 2016, 62, 1304-1309.	5.8	34
38	Short Communication: <i>CXCL12</i> rs1029153 Polymorphism Is Associated with the Sustained Virological Response in HIV/Hepatitis C Virus-Coinfected Patients on Hepatitis C Virus Therapy. AIDS Research and Human Retroviruses, 2016, 32, 226-231.	1.1	0
39	TLR3 polymorphisms are associated with virologic response to hepatitis C virus (HCV) treatment in HIV/HCV coinfected patients. Journal of Clinical Virology, 2015, 65, 62-67.	3.1	6
40	Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. Journal of Antimicrobial Chemotherapy, 2015, 70, 1833-1842.	3.0	56
41	PPARÎ ³ 2 Pro12Ala Polymorphism Is Associated With Sustained Virological Response in HIV/HCV-Coinfected Patients Under HCV Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 113-119.	2.1	5
42	Immunological Function Restoration with Lopinavir/Ritonavir Versus Efavirenz Containing Regimens in HIV-Infected Patients: A Randomized Clinical Trial. AIDS Research and Human Retroviruses, 2014, 30, 425-433.	1,1	8
43	HIV gagâ€specific immune response mediated by double negative (CD3 ⁺ CD4 ^{â^'} CD8 ^{â''}) T cells in HIVâ€exposed seronegative individuals. Journal of Medical Virology, 2013, 85, 200-209.	5.0	11
44	Identification of a new epitope for HIVâ€neutralizing antibodies in the gp41 membrane proximal external region by an Envâ€tailored phage display library. European Journal of Immunology, 2013, 43, 499-509.	2.9	16
45	The changing face of hepatitis C in the new era of direct-acting antivirals. Antiviral Research, 2013, 97, 36-40.	4.1	24
46	HLA-E variants are associated with sustained virological response in HIV/hepatitis C virus-coinfected patients on hepatitis C virus therapy. Aids, 2013, 27, 1231-1238.	2.2	15
47	HIV exposed seronegative individuals show antibodies specifically recognizing native HIV envelope glycoprotein. Aids, 2013, 27, 1375-1385.	2.2	15
48	Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia. Journal of Antimicrobial Chemotherapy, 2013, 68, 2616-2625.	3.0	14
49	A model to predict the response to therapy against hepatitis C virus (HCV) including low-density lipoprotein receptor genotype in HIV/HCV-coinfected patients. Journal of Antimicrobial Chemotherapy, 2013, 68, 915-921.	3.0	4
50	Interferon-stimulated genes are associated with peginterferon/ribavirin treatment response regardless of IL28B alleles in hepatitis C virus/HIV-coinfected patients. Aids, 2013, 27, 687-696.	2.2	10
51	Analysis of IL28B alleles with virologic response patterns and plasma cytokine levels in HIV/HCV-coinfected patients. Aids, 2013, 27, 163-173.	2.2	12
52	Triple combination therapy for hepatitis C with telaprevir exhibits greater early antiviral activity than with boceprevir. Antiviral Therapy, 2013, 18, 709-715.	1.0	12
53	Short Communication: Does Interleukin-28B Single Nucleotide Polymorphisms Influence the Natural History of Hepatitis B?. AIDS Research and Human Retroviruses, 2012, 28, 1262-1264.	1.1	13
54	Short Communication High Risk of Endothelial Dysfunction in HIV Individuals May Result from Deregulation of Circulating Endothelial Cells and Endothelial Progenitor Cells. AIDS Research and Human Retroviruses, 2012, 28, 656-659.	1,1	17

#	Article	IF	CITATIONS
55	Differences in Virological Response to Peginterferon-α Plus Ribavirin in HIV-Positive Patients Coinfected With HCV Subtypes 1a or 1b. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 60, 117-123.	2.1	12
56	Mechanisms involved in CD4 cell gains in HIV-infected patients switched to raltegravir. Aids, 2012, 26, 551-557.	2.2	9
57	Variants in the ITPA Gene Protect Against Ribavirin-Induced Hemolytic Anemia in HIV/HCV-Coinfected Patients With All HCV Genotypes. Journal of Infectious Diseases, 2012, 205, 376-383.	4.0	31
58	Prediction of response to pegylated interferon plus ribavirin in HIV/hepatitis C virus (HCV)-coinfected patients using HCV genotype, IL28B variations, and HCV-RNA load. Journal of Hepatology, 2012, 56, 788-794.	3.7	34
59	Different impact of IL28B polymorphisms on response to peginterferon-α plus ribavirin in HIV-positive patients infected with HCV subtypes 1a or 1b. Journal of Clinical Virology, 2012, 55, 58-61.	3.1	12
60	Impact of IL28B gene polymorphisms on interferon-Â3 plasma levels during pegylated interferon-Â/ribavirin therapy for chronic hepatitis C in patients coinfected with HIV. Journal of Antimicrobial Chemotherapy, 2012, 67, 1246-1249.	3.0	27
61	Elite Controllers Display Higher Activation on Central Memory CD8 T Cells Than HIV Patients Successfully on HAART. AIDS Research and Human Retroviruses, 2011, 27, 157-165.	1.1	26
62	The expansion ability but not the quality of HIV-specific CD8+ T cells is associated with protective human leucocyte antigen class I alleles in long-term non-progressors. Immunology, 2011, 134, 305-313.	4.4	4
63	Interleukin-28B gene polymorphisms do not influence the susceptibility to HIV-infection or CD4 cell decline. Aids, 2011, 25, 269-271.	2.2	26
64	IL28B gene polymorphisms and viral kinetics in HIV/hepatitis C virus-coinfected patients treated with pegylated interferon and ribavirin. Aids, 2011, 25, 1025-1033.	2.2	41
65	Response to: "ls the Study Power Enough to Say â€~No Difference'?―by Geib et al. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 58, e37-e38.	2.1	0
66	Impact of IL28B polymorphisms on response to peginterferon and ribavirin in HIV–hepatitis C virus-coinfected patients with prior nonresponse or relapse. Aids, 2011, 25, 1131-1133.	2.2	20
67	An Additive Effect of Protective Host Genetic Factors Correlates With HIV Nonprogression Status. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 300-305.	2.1	24
68	Longitudinal Assessment of Interleukin 7 Plasma Levels in HIV-Infected Patients in the Absence of and Under Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 58, 436-441.	2.1	5
69	Elevated TGFâ€Î²1 levels might protect HCV/ HIVâ€coinfected patients from liver fibrosis. European Journal of Clinical Investigation, 2011, 41, 70-76.	3.4	21
70	Soluble markers of inflammation are associated with Framingham scores in HIV-infected patients on suppressive antiretroviral therapy. Journal of Infection, 2011, 63, 382-390.	3.3	19
71	Long-term non-progressors display a greater number of Th17 cells than HIV-infected typical progressors. Clinical Immunology, 2011, 139, 110-114.	3.2	60
72	Influence of Interleukin-28B Single-Nucleotide Polymorphisms on Progression to Liver Cirrhosis in Human Immunodeficiency Virus–Hepatitis C Virus–Coinfected Patients Receiving Antiretroviral Therapy. Journal of Infectious Diseases, 2011, 203, 1629-1636.	4.0	55

JOSé M BENITO

#	Article	IF	CITATIONS
73	Impact of Inosine Triphosphatase Gene Variants on the Risk of Anemia in HIV/Hepatitis C Virus-Coinfected Patients Treated for Chronic Hepatitis C. Clinical Infectious Diseases, 2011, 53, 1291-1295.	5.8	16
74	HCV-Specific T-Cell Responses in HIV/Hepatitis C Virus-Coinfected Patients on Highly Active Antiretroviral Therapy Are Comparable to Those Observed in Hepatitis C Virus-Monoinfected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 57, 1-8.	2.1	21
75	Host factors involved in low susceptibility to HIV infection. AIDS Reviews, 2011, 13, 30-40.	1.0	11
76	Association of a single nucleotide polymorphism near the interleukin-28B gene with response to hepatitis C therapy in HIV/hepatitis C virus-coinfected patients. Aids, 2010, 24, F23-F29.	2.2	184
77	Evolution of the Functional Profile of HIV-Specific CD8+ T Cells in Patients With Different Progression of HIV Infection Over 4 Years. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 55, 29-38.	2.1	16
78	Modeling the Probability of Sustained Virological Response to Therapy with Pegylated Interferon plus Ribavirin in Patients Coinfected with Hepatitis C Virus and HIV. Clinical Infectious Diseases, 2010, 51, 1209-1216.	5.8	56
79	Low-Level Exposure to HIV Induces Virus-Specific T Cell Responses and Immune Activation in Exposed HIV-Seronegative Individuals. Journal of Immunology, 2010, 185, 982-989.	0.8	38
80	Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to Disease Activity Score-28. Autoimmunity, 2009, 42, 636-645.	2.6	59
81	Suppression of viral replication with highly active antiretroviral therapy has no impact on the functional profile of HIVâ€specific CD8 ⁺ T cells. European Journal of Immunology, 2008, 38, 1548-1558.	2.9	14
82	Short Communication:HIV Rebound after Discontinuation of Antiretroviral Therapy Increases and Expands HIV-Specific CD8+Responses But Has No Impact on Its Functionality. AIDS Research and Human Retroviruses, 2008, 24, 1197-1201.	1.1	6
83	No Major Differences in the Functional Profile of HIV Gag and Nef-Specific CD8 ⁺ Reponses between Long-Term Nonprogressors and Typical Progressors. AIDS Research and Human Retroviruses, 2008, 24, 1185-1195.	1.1	13
84	Downâ€Regulation of Interleukinâ€7 Receptor (CD127) in HIV Infection Is Associated with T Cell Activation and Is a Main Factor Influencing Restoration of CD4 ⁺ Cells after Antiretroviral Therapy. Journal of Infectious Diseases, 2008, 198, 1466-1473.	4.0	58
85	Impact of antiretroviral therapy on chemokine (C-C motif) receptor 5 expression in HIV patients followed for over 2 years. Aids, 2008, 22, 1371-1374.	2.2	2
86	Escape Mutations in HIV Infection and its Impact on CD8+ T Cell Responses. Current Molecular Medicine, 2007, 7, 446-458.	1.3	11
87	Influence of Human T Cell Lymphotropic Virus Type 2 Coinfection on Virological and Immunological Parameters in HIV Type 1–Infected Patients. Clinical Infectious Diseases, 2007, 44, 105-110.	5.8	16
88	Mitochondrial DNA depletion in HIV-infected patients with chronic hepatitis C and effect of pegylated interferon plus ribavirin therapy. Aids, 2007, 21, 583-588.	2.2	24
89	Impact of Ethnicity and HIV Type 1 Subtype on Response to First-Line Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2007, 23, 891-894.	1.1	16
90	Human T Lymphotropic Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis in an HIV-Positive Patient Coinfected with Human T Lymphotropic Virus Type 2 Following Initiation of Antiretroviral Therapy. Clinical Infectious Diseases, 2007, 45, e118-e120.	5.8	17

JOSé M BENITO

#	Article	IF	CITATIONS
91	Influence of HCV genotype and co-infection with human immunodeficiency virus on CD4+ and CD8+ T-cell responses to hepatitis C virus. Journal of Medical Virology, 2007, 79, 503-510.	5.0	26
92	Prevalence of X4 tropic HIV-1 variants in patients with differences in disease stage and exposure to antiretroviral therapy. Journal of Medical Virology, 2007, 79, 1040-1046.	5.0	43
93	Evolution of T-cell Responses to Hepatitis C Virus (HCV) during Pegylated Interferon plus Ribavirin treatment in HCV-Monoinfected and in HCV/HIV-Coinfected Patients. Antiviral Therapy, 2007, 12, 459-468.	1.0	9
94	HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood, 2006, 107, 4781-4789.	1.4	1,681
95	Coinfection with Hepatitis C Virus Increases Lymphocyte Apoptosis in HIV-Infected Patients. Clinical Infectious Diseases, 2006, 43, 1209-1212.	5.8	36
96	Degeneracy and Repertoire of the Human HIV-1 Gag p1777–85CTL Response. Journal of Immunology, 2006, 176, 6690-6701.	0.8	27
97	Immunological and Virological Effects of Structured Treatment Interruptions following Exposure to Hydroxyurea Plus Didanosine. AIDS Research and Human Retroviruses, 2006, 22, 734-743.	1.1	6
98	Impact of Gag Sequence Variability on Level, Phenotype, and Function of Anti-HIV Gag-Specific CD8+Cytotoxic T Lymphocytes in Untreated Chronically HIV-Infected Patients. AIDS Research and Human Retroviruses, 2006, 22, 884-892.	1.1	4
99	Differential Upregulation of CD38 on Different T-Cell Subsets May Influence the Ability to Reconstitute CD4+ T Cells Under Successful Highly Active Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 38, 373-381.	2.1	84
100	CD4+T Cell Recovery beyond the First Year of Complete Suppression of Viral Replication during Highly Active Antiretroviral Therapy Is Not Influenced by CD8+T Cell Activation. Journal of Infectious Diseases, 2005, 192, 2142-2146.	4.0	20
101	CD38 Expression on CD8 T Lymphocytes as a Marker of Residual Virus Replication in Chronically HIV-Infected Patients Receiving Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2004, 20, 227-233.	1.1	80
102	Long-term suppression of plasma viremia with highly active antiretroviral therapy despite virus evolution and very limited selection of drug-resistant genotypes. Journal of Medical Virology, 2004, 73, 350-361.	5.0	6
103	Evolution of genotypic and phenotypic resistance to Enfuvirtide in HIVâ€infected patients experiencing prolonged virologic failure. Journal of Medical Virology, 2004, 74, 21-28.	5.0	64
104	Enhanced HIV-specific immune responses in chronically HIV-infected patients receiving didanosine plus hydroxyurea. Aids, 2004, 18, 1251-1261.	2.2	11
105	Differences in disease progression in a cohort of long-term non-progressors after more than 16 years of HIV-1 infection. Aids, 2004, 18, 1109-1116.	2.2	93
106	The role of CD8+ T-cell response in HIV infection. AIDS Reviews, 2004, 6, 79-88.	1.0	63
107	Virus Load and Cytolitic Responses in Human Immunodeficiency Virus Infection: What Is Cause and What Is Effect. Journal of Infectious Diseases, 2003, 188, 794-795.	4.0	2
108	Phenotype and Functional Characteristics of HIV-Specific Cytotoxic CD8+ T Cells in Chronically Infected Patients. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 34, 255-266.	2.1	17

#	Article	IF	CITATIONS
109	Differences in Cellular Activation and Apoptosis in HIV-Infected Patients Receiving Protease Inhibitors or Nonnucleoside Reverse Transcriptase Inhibitors. AIDS Research and Human Retroviruses, 2002, 18, 1379-1388.	1.1	34
110	Elevated levels of CD4+CD7â^' T cells in HIV infection add to the prognostic value of low CD4 T cell levels and HIV-1-RNA quantification. Aids, 2001, 15, 2459-2460.	2.2	7
111	Increased levels of activated subsets of CD4 T cells add to the prognostic value of low CD4 T cell counts in a cohort of HIV-infected drug users. Aids, 2000, 14, 2823-2829.	2.2	66
112	Quantitative Alterations of the Functionally Distinct Subsets of CD4 and CD8 T Lymphocytes in Asymptomatic HIV Infection. Journal of Acquired Immune Deficiency Syndromes, 1997, 14, 128-135.	0.3	79
113	Serum β2-Microglobulin and Prediction of Progression to AIDS in HIV-Infected Injection Drug Users. Journal of Acquired Immune Deficiency Syndromes, 1995, 8, 266-272.	0.3	10