Ali Seifitokaldani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5826657/publications.pdf Version: 2024-02-01

ΔΗ SEIEITOKALDANI

#	Article	IF	CITATIONS
1	Promoted self-construction of Î ² -NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 301, 120764.	20.2	103
2	Technoeconomic and Life-Cycle Assessment for Electrocatalytic Production of Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 4206-4217.	6.7	13
3	CO ₂ Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catalysis, 2022, 12, 7862-7876.	11.2	21
4	Experimental methods in chemical engineering: Density functional theory. Canadian Journal of Chemical Engineering, 2021, 99, 1885-1911.	1.7	19
5	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	10.3	36
6	Boride-derived oxygen-evolution catalysts. Nature Communications, 2021, 12, 6089.	12.8	51
7	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	34.4	325
8	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	12.8	181
9	High-Valent Nickel Promoted by Atomically Embedded Copper for Efficient Water Oxidation. ACS Catalysis, 2020, 10, 9725-9734.	11.2	100
10	Fundamentals of Electrochemical CO ₂ Reduction on Single-Metal-Atom Catalysts. ACS Catalysis, 2020, 10, 10068-10095.	11.2	161
11	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	27.8	807
12	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â^'2} . Science, 2020, 367, 661-666.	12.6	860
13	Electrochemical Reactors for CO2 Conversion. Catalysts, 2020, 10, 473.	3.5	72
14	In Situ Spectroscopic Methods for Electrocatalytic CO2 Reduction. Catalysts, 2020, 10, 481.	3.5	35
15	Metal–organic framework derived copper catalysts for CO ₂ to ethylene conversion. Journal of Materials Chemistry A, 2020, 8, 11117-11123.	10.3	82
16	DFT Analysis of Ethanol Electro-Oxidation on Fe(110) and Fe3C(110) and its Correlation with the Stress Corrosion Cracking of Carbon Steel. Journal of the Electrochemical Society, 2020, 167, 111503.	2.9	2
17	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	24.0	106
18	Enhanced Electrochemical Reduction of CO ₂ Catalyzed by Cobalt and Iron Amino Porphyrin Complexes. ACS Applied Energy Materials, 2019, 2, 1330-1335.	5.1	71

ALI SEIFITOKALDANI

#	Article	IF	CITATIONS
19	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	21.0	769
20	Electroâ€Optic Modulation in Hybrid Metal Halide Perovskites. Advanced Materials, 2019, 31, e1808336.	21.0	42
21	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	12.8	127
22	Hydronium-Induced Switching between CO ₂ Electroreduction Pathways. Journal of the American Chemical Society, 2018, 140, 3833-3837.	13.7	144
23	ELSI: A unified software interface for Kohn–Sham electronic structure solvers. Computer Physics Communications, 2018, 222, 267-285.	7.5	78
24	A Surface Reconstruction Route to High Productivity and Selectivity in CO ₂ Electroreduction toward C ₂₊ Hydrocarbons. Advanced Materials, 2018, 30, e1804867.	21.0	200
25	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	12.8	279
26	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	21.0	57
27	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	12.6	1,638
28	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	13.7	326
29	2D Metal Oxyhalideâ€Đerived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	21.0	200
30	Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nature Catalysis, 2018, 1, 421-428.	34.4	537
31	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 4417-4423.	9.1	57
32	Combined high alkalinity and pressurization enable efficient CO ₂ electroreduction to CO. Energy and Environmental Science, 2018, 11, 2531-2539.	30.8	214
33	On the limitation of density functional theory (DFT) for the treatment of the anharmonicity in FCC metals. Solid State Communications, 2016, 247, 78-81.	1.9	2
34	Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism. Scientific Reports, 2016, 6, 33033.	3.3	8
35	Thermophysical properties of titanium and vanadium nitrides: Thermodynamically self-consistent approach coupled with density functional theory. Journal of Alloys and Compounds, 2016, 662, 240-251.	5.5	21
36	An <i>ab initio</i> method for the prediction of the lattice thermal transport properties of oxide systems: Case study of Li2O and K2O. Journal of Applied Physics, 2015, 118, .	2.5	19

ALI SEIFITOKALDANI

#	Article	IF	CITATIONS
37	Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol–gel method for the oxygen reduction reaction (ORR) in acid medium. International Journal of Hydrogen Energy, 2015, 40, 10427-10438.	7.1	22
38	Thermodynamically self-consistent method to predict thermophysical properties of ionic oxides. Computational Materials Science, 2015, 108, 17-26.	3.0	20
39	Electrochemically Stable Titanium Oxy-Nitride Support for Platinum Electro-Catalyst for PEM Fuel Cell Applications. Electrochimica Acta, 2015, 167, 237-245.	5.2	24
40	Electrochemical and physicochemical properties of titanium Oxy-nitride electrocatalyst prepared by sol-gel methods for the oxygen reduction reaction purposes. Journal of Solid State Electrochemistry, 2015, 19, 3097-3109.	2.5	5
41	Density Functional Theory (DFT) Computation of the Oxygen Reduction Reaction (ORR) on Titanium Nitride (TiN) Surface. Electrochimica Acta, 2014, 141, 25-32.	5.2	42
42	Oxygen Reduction Reaction (ORR) on a Mixed Titanium and Tantalum Oxy-nitride Catalyst Prepared by the Urea-based Sol-gel Method. Journal of New Materials for Electrochemical Systems, 2014, 17, 055-065.	0.6	5