
IstvÃjn MolnÃjr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5826069/publications.pdf Version: 2024-02-01

ISTVÃ:N MOLNÃ:D

#	Article	IF	CITATIONS
1	Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. International Journal of Molecular Sciences, 2022, 23, 3821.	4.1	6
2	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	12.8	48
3	Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. International Journal of Molecular Sciences, 2022, 23, 3191.	4.1	6
4	A highly differentiated region of wheat chromosome 7AL encodes a <i>Pm1a</i> immune receptor that recognizes its corresponding <i>AvrPm1a</i> effector from <i>Blumeria graminis</i> . New Phytologist, 2021, 229, 2812-2826.	7.3	72
5	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
6	Chromosome analysis and sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 328-342.	1.5	19
7	Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. Frontiers in Plant Science, 2021, 12, 689031.	3.6	21
8	Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoretical and Applied Genetics, 2020, 133, 903-915.	3.6	26
9	Editorial: Aegilops: Promising Genesources to Improve Agronomical and Quality Traits of Wheat. Frontiers in Plant Science, 2020, 11, 1060.	3.6	4
10	1RS arm of Secale cereanum †Kriszta' confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Scientific Reports, 2020, 10, 1792.	3.3	15
11	Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Scientific Reports, 2020, 10, 22327.	3.3	14
12	Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theoretical and Applied Genetics, 2019, 132, 2881-2898.	3.6	12
13	Dissecting the Complex Genome of Crested Wheatgrass by Chromosome Flow Sorting. Plant Genome, 2019, 12, 180096.	2.8	14
14	Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE, 2019, 14, e0211892.	2.5	35
15	Unlocking the Genetic Diversity and Population Structure of a Wild Gene Source of Wheat, Aegilops biuncialis Vis., and Its Relationship With the Heading Time. Frontiers in Plant Science, 2019, 10, 1531.	3.6	16
16	Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS ONE, 2018, 13, e0206248.	2.5	12
17	Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS ONE, 2018, 13, e0208840.	2.5	13
18	Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines. PLoS ONE, 2018, 13, e0198758.	2.5	2

IstvÃin MolnÃir

#	Article	IF	CITATIONS
19	Cytomolecular discrimination of the Am chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats. Journal of Applied Genetics, 2017, 58, 67-70.	1.9	5
20	Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. Frontiers in Plant Science, 2017, 8, 1529.	3.6	42
21	Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE, 2017, 12, e0173623.	2.5	36
22	Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS ONE, 2017, 12, e0174170.	2.5	42
23	Dissecting the U, M, S and C genomes of wild relatives of bread wheat (<i>Aegilops</i> spp.) into chromosomes and exploring their synteny with wheat. Plant Journal, 2016, 88, 452-467.	5.7	77
24	Flow sorting of C-genome chromosomes from wild relatives of wheat <i>Aegilops markgrafii</i> , <i>Ae. triuncialis</i> and <i>Ae. cylindrica</i> , and their molecular organization. Annals of Botany, 2015, 116, 189-200.	2.9	37
25	Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley "Manas― Euphytica, 2015, 203, 491-504.	1.2	24
26	Genomics of Wild Relatives and Alien Introgressions. , 2015, , 347-381.		8
27	Molecular cytogenetic identification and phenotypic description of a new synthetic amphiploid, Triticum timococcum (AtAtGGAmAm). Genetic Resources and Crop Evolution, 2015, 62, 55-66.	1.6	14
28	Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines. , 2014, , 255-283.		22
29	Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. Journal of Plant Physiology, 2014, 171, 509-517.	3.5	22
30	Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica, 2014, 195, 45-55.	1.2	12
31	Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theoretical and Applied Genetics, 2014, 127, 1091-1104.	3.6	49
32	Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat –Aegilops biuncialissubstitution and 3Mb.4BS translocation identified by GISH and FISH. Genome, 2014, 57, 61-67.	2.0	34
33	Syntenic Relationships between the U and M Genomes of Aegilops, Wheat and the Model Species Brachypodium and Rice as Revealed by COS Markers. PLoS ONE, 2013, 8, e70844.	2.5	42
34	Molecular cytogenetic identification of a wheatâ€ <i>Aegilops geniculata</i> Roth spontaneous chromosome substitution and its effects on the growth and physiological responses of seedlings to osmotic stress. Plant Breeding, 2012, 131, 81-87.	1.9	2
35	Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 2011, 107, 65-76.	2.9	57
36	Chromosome Isolation by Flow Sorting in Aegilops umbellulata and Ae. comosa and Their Allotetraploid Hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE, 2011, 6, e27708.	2.5	43

IstvÃin MolnÃir

#	Article	IF	CITATIONS
37	Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theoretical and Applied Genetics, 2010, 120, 1535-1545.	3.6	34
38	Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculata addition lines. Euphytica, 2010, 175, 357-364.	1.2	15
39	Detection of intergenomic chromosome rearrangements in irradiated <i>Triticum aestivum</i> – <i>Aegilops biuncialis</i> amphiploids by multicolour genomic in situ hybridization. Genome, 2009, 52, 156-165.	2.0	44
40	Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 2008, 163, 1-19.	1.2	222
41	Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome, 2006, 49, 289-296.	2.0	31
42	Molecular cytogenetic characterization of <i>Aegilops biuncialis</i> and its use for the identification of 5 derived wheat – A <i>egilops biuncialis</i> disomic addition lines. Genome, 2005, 48, 1070-1082.	2.0	82
43	Demonstration ofAegilops biuncialischromosomes in a wheat background by genomicin situhybridization (GISH) and identification of U chromosomes by FISH using GAA sequences. Cereal Research Communications, 2005, 33, 673-680.	1.6	18
44	Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 2004, 31, 1149.	2.1	107
45	Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. FEBS Letters, 2001, 508, 153-156.	2.8	56
46	Short-Term Responses of Photosystem II to Heat Stress in Cold-Acclimated Atrazine-Resistant and Susceptible Biotypes of Erigeron canadensis (L.). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 665-670.	1.4	3
47	Effects of growth temperatures of 5 and 25°C on long-term responses of photosystem II to heat stress in atrazine-resistant and susceptible biotypes of Erigeron canadensis. Functional Plant Biology, 1998, 25, 145.	2.1	8
48	Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat-Aegilops biuncialis Hybrids. Frontiers in Plant Science, 0, 13, .	3.6	5