Miguel A PiÃ \pm eros

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5825225/publications.pdf
Version: 2024-02-01

Plant HKT Channels: An Updated View on Structure, Function and Gene Regulation. International
1 Journal of Molecular Sciences, 2021, 22, 1892.

YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in <i>Brachypodium</i>. Plant Physiology, 2021, 186, 655-676.

Indoleâ€ßâ€glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. Plant Journal, 2021, 106, 245-257.

Cell-Free Synthesis of a Transmembrane Mechanosensitive Channel Protein into a Hybrid-Supported Lipid Bilayer. ACS Applied Bio Materials, 2021, 4, 3101-3112.

Grain mineral nutrient profiling and iron bioavailability of an ancient crop tef (Eragrostis tef).
Australian Journal of Crop Science, 2021, , 1314-1324.

Apple ALMT9 Requires a Conserved C-Terminal Domain for Malate Transport Underlying Fruit Acidity.
Plant Physiology, 2020, 182, 992-1006.

A Sugar Transporter Takes Up both Hexose and Sucrose for Sorbitol-Modulated In Vitro Pollen Tube
$7 \quad$ Growth in Apple. Plant Cell, 2020, 32, 449-469.

Low Additive Genetic Variation in a Trait Under Selection in Domesticated Rice. G3: Genes, Genomes, Genetics, 2020, 10, 2435-2443.

Elucidation of Structural Domains Underlying Substrate Recognition in Plant MATE Transporters.
Biophysical Journal, 2020, 118, 442a.

An extracellular cation coordination site influences ion conduction of OsHKT2;2. BMC Plant Biology,
2019, 19, 316.

Signal coordination before, during and after stomatal closure in response to drought stress. New
Phytologist, 2019, 224, 675-688.
Cryo-EM structure of OSCA1.2 from <i>Oryza sativa</i> elucidates the mechanical basis of potential
12 membrane hyperosmolality gating. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14309-14318.

13 Structure Function Studies of a Plant Non Selective Cation Channel Involved in Drough Tolerance.
Biophysical Journal, 2019, 116, 399a.

Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. Plant, Cell and Environment, 2018, 41, 809-822.

Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils. Frontiers in Plant Science, 2018, 9, 1420.

Lossâ $€$ ofấfunction mutation of the calcium sensor <scp>CBL</scp> 1 increases aluminum sensitivity in <i>Arabidopsis</i〉. New Phytologist, 2017, 214, 830-841.

An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root
Architecture by Modulating Iron Homeostasis in Roots. Molecular Plant, 2017, 10, 244-259.
8.3

133

Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Scientific Reports, 2017, 7, 17996.

The role of aluminum sensing and signaling in plant aluminum resistance. Journal of Integrative Plant Biology, 2014, 56, 221-230.

Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines. Plant and
Soil, 2014, 377, 357-367.
3.7

14

Phosphate transporters <scp><scp>OsPHT1</scp><|scp>;9 and <scp><scp>OsPHT1</scp><|scp>;10 are
involved in phosphate uptake in rice. Plant, Cell and Environment, 2014, 37, 1159-1170.
5.7

135
Functional, structural and phylogenetic analysis of domains underlying the $\langle\mathrm{Scp}\rangle \mathrm{A}\langle/ \mathrm{scp}\rangle \mid$ sensitivity
of the aluminumâ€activated malate/anion transporter, $\langle\operatorname{scp}\rangle \mathrm{T}</ \mathrm{scp}\rangle \mathrm{a}\langle\mathrm{scp}\rangle \mathrm{ALMT}</ \mathrm{scp}\rangle 1$. Plant Journal,
$2013,76,766-780$. 2013, 76, 766-780.

30 underlies genetic background effects for aluminum tolerance in sorghum. Plant Journal, 2013, 73,
5.7

31
276-288.

> Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through <i>GmALMT1</i> to Improve Soybean Adaptation to Acid Soils ÂA A. Plant Physiology, 2013, 161, 1347-1361.

Aluminum tolerance in maize is associated with higher < i > MATE1</i>gene copy number. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5241-5246.
7.1

265

Maize ZmALMT is a root anion transporter that mediates constitutive root malate efflux. Plant, Cell and Environment, 2012, 35, 1185-1200.
5.7

74

A <i>de novo<|i> synthesis citrate transporter, <i>Vigna umbellata</i> multidrug and toxic compound

Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of

Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies
aluminum resistance in wheat. Plant Journal, 2009, 60, 411-423.

38 Maize Al Tolerance. , 2009, , 367-380.

39	Not all ALMTlâ€type transporters mediate aluminumâ€activated organic acid responses: the case of <i>ZmALMT1 â€"</i> an anionâ€selective transporter. Plant Journal, 2008, 53, 352-367.	5.7	97
40	Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in <i>Xenopus<\|i> Oocytes: Functional and Structural Implications. Plant Physiology, 2008, 147, 2131-2146.	4.8	99
41	Characterization of <i>AtALMT1 </i> Expression in Aluminum-Inducible Malate Release and Its Role for Rhizotoxic Stress Tolerance in Arabidopsis. Plant Physiology, 2007, 145, 843-852.	4.8	184
42	A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 2007, 39, 1156-1161.	21.4	665
43	Plant Cd $2+$ and $\mathrm{Zn} 2+$ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytologist, 2007, 175, 51-58.	7.3	90

AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for 44 aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9738-9743.
The Physiology, Genetics and Molecular Biology of Plant Aluminum Resistance and Toxicity. Plant and
Soil, 2005, 274, 175-195.
$46 \quad \begin{aligned} & \text { Aluminum Resistance in Maize Cannot Be Solely Explained by Root Organic Acid Exudation. A } \\ & \text { Comparative Physiological Study. Plant Physiology, 2005, 137, 231-241. }\end{aligned}$
$47 \quad \begin{aligned} & \text { The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant } \\ & \text { Ecophysiology, 2005, 175-195. }\end{aligned}$

HOW DO CROP PLANTS TOLERATE ACID SOILS? MECHANISMS OF ALUMINUM TOLERANCE AND PHOSPHOROUS EFFICIENCY. Annual Review of Plant Biology, 2004, 55, 459-493.
18.7

1,460
7.1

509
1.5

65
48

Differences in Whole-Cell and Single-Channel lon Currents across the Plasma Membrane of Mesophyll
Cells from Two Closely RelatedThlaspi Species. Plant Physiology, 2003, 131, 583-594.

The Physiology and Biophysics of an Aluminum Tolerance Mechanism Based on Root Citrate Exudation
in Maize. Plant Physiology, 2002, 129, 1194-1206.
4.8

186

51 Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant and Soil, 2002, 247, $109-119$.
3.7

66

A Patch-Clamp Study on the Physiology of Aluminum Toxicity and Aluminum Tolerance in Maize.

52 Identification and Characterization of Al3+-Induced Anion Channels. Plant Physiology, 2001, 125,
4.8

292-305.

Cation Permeability and Selectivity of a Root Plasma Membrane Calcium Channel. Journal of Membrane
Biology, 2000, 174, $71-83$.
2.1 28

[^0]Selectivity of Liquid Membrane Cadmium Microelectrodes Based on the
IonophoreN,N,Nâ€²,Nâ€2-Tetrabutyl-3,6-dioxaoctanedithioamide. Electroanalysis, 1998, 10, 937-941.

[^0]: 53

