Ritchie E Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5824378/publications.pdf

Version: 2024-02-01

66 papers 6,746 citations

36 h-index 62 g-index

74 all docs

74 docs citations

times ranked

74

6163 citing authors

#	Article	IF	CITATIONS
1	Control of Sleep and Wakefulness. Physiological Reviews, 2012, 92, 1087-1187.	28.8	1,089
2	The physiology of brain histamine. Progress in Neurobiology, 2001, 63, 637-672.	5.7	891
3	Excitation of Ventral Tegmental Area Dopaminergic and Nondopaminergic Neurons by Orexins/Hypocretins. Journal of Neuroscience, 2003, 23, 7-11.	3.6	522
4	Orexin/Hypocretin Excites the Histaminergic Neurons of the Tuberomammillary Nucleus. Journal of Neuroscience, 2001, 21, 9273-9279.	3.6	477
5	Convergent Excitation of Dorsal Raphe Serotonin Neurons by Multiple Arousal Systems (Orexin/Hypocretin, Histamine and Noradrenaline). Journal of Neuroscience, 2002, 22, 8850-8859.	3.6	326
6	Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology, 2001, 40, 457-459.	4.1	254
7	Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3535-3540.	7.1	246
8	Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. Physiology, 2017, 32, 60-92.	3.1	201
9	Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 2006, 23, 2739-2748.	2.6	185
10	Effects of arousal―and feedingâ€related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. European Journal of Neuroscience, 2006, 23, 2677-2685.	2.6	157
11	On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. Journal of Physiology, 1999, 515, 777-786.	2.9	109
12	Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. Journal of Neuroscience, 2016, 36, 2057-2067.	3.6	106
13	Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition. Journal of Neuroscience, 2015, 35, 13896-13903.	3.6	103
14	Orexins/hypocretins cause sharp wave- and î-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience, 2004, 127, 519-528.	2.3	102
15	Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regulatory Peptides, 2002, 104, 83-89.	1.9	97
16	Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology, 1997, 36, 1539-1548.	4.1	88
17	Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology, 1995, 34, 181-190.	4.1	85
18	Impact of Ketamine on Neuronal Network Dynamics: Translational Modeling of Schizophreniaâ€Relevant Deficits. CNS Neuroscience and Therapeutics, 2013, 19, 437-447.	3.9	85

#	Article	IF	CITATIONS
19	Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Frontiers in Neurology, 2015, 6, 135.	2.4	82
20	Characterization of GABAergic neurons in rapidâ€eyeâ€movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knockâ€in mice. European Journal of Neuroscience, 2008, 27, 352-363.	2.6	81
21	Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons. Journal of Neuroscience, 2014, 34, 2832-2844.	3.6	80
22	Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. Journal of Comparative Neurology, 2013, 521, 1225-1250.	1.6	79
23	Histamine H3 receptors depress synaptic transmission in the corticostriatal pathway. Neuropharmacology, 2001, 40, 106-113.	4.1	76
24	Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins. Neuroscience, 2006, 143, 739-755.	2.3	74
25	Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neuroscience Letters, 2002, 320, 133-136.	2.1	71
26	Functional Diversity of Ventral Midbrain Dopamine and GABAergic Neurons. Molecular Neurobiology, 2004, 29, 243-260.	4.0	66
27	Sleep deprivation-induced protein changes in basal forebrain: Implications for synaptic plasticity. Journal of Neuroscience Research, 2005, 82, 650-658.	2.9	65
28	Histamine H3 receptorâ€mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro Journal of Physiology, 1996, 496, 175-184.	2.9	60
29	Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience, 2011, 199, 51-63.	2.3	57
30	The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom?. Current Opinion in Neurobiology, 2017, 44, 159-166.	4.2	54
31	Mice deficient in endothelial nitric oxide synthase exhibit a selective deficit in hippocampal long-term potentiation. Neuroscience, 1999, 90, 1157-1165.	2.3	46
32	The mechanism of spontaneous firing in histamine neurons. Behavioural Brain Research, 2001, 124, 105-112.	2.2	46
33	Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Scientific Reports, 2019, 9, 3607.	3.3	46
34	Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. European Journal of Neuroscience, 2010, 32, 1528-1536.	2.6	44
35	Impaired GABAergic Neurotransmission in Schizophrenia Underlies Impairments in Cortical Gamma Band Oscillations. Current Psychiatry Reports, 2013, 15, 346.	4.5	42
36	Metabotropic glutamate receptor agonists reduce paired-pulse depression in the dentate gyrus of the rat in vitro. Neuroscience Letters, 1995, 196, 17-20.	2.1	40

#	Article	IF	CITATIONS
37	Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep, 2019, 42, .	1.1	40
38	Co-expression of non-selective cation channels of the transient receptor potential canonical family in central aminergic neurones. Journal of Neurochemistry, 2003, 85, 1547-1552.	3.9	38
39	Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neuroscience Letters, 2010, 469, 1-5.	2.1	35
40	Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Current Biology, 2020, 30, 2379-2385.e4.	3.9	35
41	(RS)-α-Methyl-4-carboxyphenylglycine (MCPG) does not block theta burst-induced long-term potentiation in area CA1 of rat hippocampal slices. Neuroscience Letters, 1994, 170, 17-21.	2.1	34
42	Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice. Frontiers in Neurology, 2013, 4, 77.	2.4	33
43	Chronic Ketamine Reduces the Peak Frequency of Gamma Oscillations in Mouse Prefrontal Cortex Ex vivo. Frontiers in Psychiatry, 2013, 4, 106.	2.6	32
44	Animal Models of Narcolepsy. CNS and Neurological Disorders - Drug Targets, 2009, 8, 296-308.	1.4	28
45	In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience, 1998, 84, 783-790.	2.3	26
46	Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Molecular Psychiatry, 2021, 26, 3461-3475.	7.9	26
47	Effects of a patient-derived de novo coding alteration of CACNA11 in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry, 2020, 10, 29.	4.8	25
48	Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Structure and Function, 2019, 224, 1505-1518.	2.3	22
49	GAD67-GFP knock-in mice have normal sleep–wake patterns and sleep homeostasis. NeuroReport, 2010, 21, 216-220.	1.2	15
50	Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nature Communications, 2022, 13, 2246.	12.8	14
51	Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Research Bulletin, 2022, 187, 181-198.	3.0	13
52	Involvement of hypocretins/orexins in sleep disorders and narcolepsy. Drug News and Perspectives, 2003, 16, 75.	1.5	12
53	Knockdown of orexin type 2 receptor in the lateral pontomesencephalic tegmentum of rats increases <scp>REM</scp> sleep. European Journal of Neuroscience, 2013, 37, 957-963.	2.6	11
54	The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse. Neuroscience, 2014, 258, 62-73.	2.3	10

#	Article	IF	Citations
55	Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience, 2017, 352, 249-261.	2.3	10
56	Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Structure and Function, 2021, 226, 1755-1778.	2.3	10
57	Activation of basal forebrain purinergic P2 receptors promotes wakefulness in mice. Scientific Reports, 2018, 8, 10730.	3.3	8
58	Translational approaches to influence sleep and arousal. Brain Research Bulletin, 2022, 185, 140-161.	3.0	8
59	Class I metabotropic glutamate receptor agonists do not facilitate the induction of long-term potentiation in the dentate gyrus of the rat in vitro. Neuroscience Letters, 1995, 202, 73-76.	2.1	7
60	Defective hippocampal mossy fiber long-term potentiation in endothelial nitric oxide synthase knockout mice. Synapse, 2001, 41, 191-194.	1.2	6
61	Fast increases of AMPA receptor sensitivity following tetanus-induced potentiation in the CA1 region of the rat hippocampus. NeuroReport, 1997, 8, 411-414.	1.2	4
62	Neuroanatomical and neurochemical basis of wakefulness and REM sleep systems., 0,, 23-58.		3
63	NEUROTRANSMITTERS, NEUROMODULATORS, AND SLEEP. , 2005, , 45-75.		2
64	Neuroanatomy and neurobiology of sleep and wakefulness. , 0, , 13-35.		2
65	East Germans succeed. Nature, 1998, 394, 613-613.	27.8	0
66	Dopaminergic Transmission and Wake-Promoting Effects of Central Nervous System Stimulants. , 2016, , 19-37.		0