Zhengqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5824063/publications.pdf

Version: 2024-02-01

173 papers 4,278 citations

36 h-index 56 g-index

173 all docs

173 docs citations

173 times ranked

2558 citing authors

#	Article	IF	Citations
1	Asymptotic Tracking Control of Uncertain Nonlinear Systems With Unknown Actuator Nonlinearity. IEEE Transactions on Automatic Control, 2014, 59, 1336-1341.	5.7	214
2	Finite-time <mml:math altimg="si4.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mrow><mml:mi>a^z</mml:mi></mml:mrow><td>ub><paml:n</td><td>nrov/98/mml:m</td></mml:mrow></mml:math>	ub>< pa ml:n	nro v/9 8/mml:m
3	Exact tracking control of nonlinear systems with time delays and dead-zone input. Automatica, 2015, 52, 272-276.	5.0	146
4	Adaptive Finite-Time Stabilization of Stochastic Nonlinear Systems Subject to Full-State Constraints and Input Saturation. IEEE Transactions on Automatic Control, 2021, 66, 1306-1313.	5.7	145
5	Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign. Fuzzy Sets and Systems, 2010, 161, 821-836.	2.7	122
6	Adaptive Backstepping Hybrid Fuzzy Sliding Mode Control for Uncertain Fractional-Order Nonlinear Systems Based on Finite-Time Scheme. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1559-1569.	9.3	107
7	Adaptive Neural-Network-Based Dynamic Surface Control for Stochastic Interconnected Nonlinear Nonstrict-Feedback Systems With Dead Zone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1386-1398.	9.3	98
8	New insight into reachable set estimation for uncertain singular time-delay systems. Applied Mathematics and Computation, 2018, 320, 769-780.	2.2	90
9	Composite-Observer-Based Output-Feedback Control for Nonlinear Time-Delay Systems With Input Saturation and Its Application. IEEE Transactions on Industrial Electronics, 2018, 65, 5856-5863.	7.9	85
10	Observer design for uncertain nonlinear systems with unmodeled dynamics. Automatica, 2015, 51, 80-84.	5.0	83
11	Convex Lyapunov functions for stability analysis of fractional order systems. IET Control Theory and Applications, 2017, 11, 1070-1074.	2.1	78
12	Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Medical Image Analysis, 2020, 60, 101602.	11.6	72
13	Leader–Follower Consensus of Multivehicle Wirelessly Networked Uncertain Systems Subject to Nonlinear Dynamics and Actuator Fault. IEEE Transactions on Automation Science and Engineering, 2018, 15, 492-505.	5.2	71
14	Adaptive output feedback control of nonlinear systems with actuator failures. Information Sciences, 2009, 179, 4249-4260.	6.9	70
15	Adaptive Output Feedback Control of Nonlinear Time-Delay Systems With Application to Chemical Reactor Systems. IEEE Transactions on Industrial Electronics, 2017, 64, 4792-4799.	7.9	65
16	Adaptive Command Filtered Neuro-Fuzzy Control Design for Fractional-Order Nonlinear Systems With Unknown Control Directions and Input Quantization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7238-7249.	9.3	65
17	Neuro-Fuzzy-Based Adaptive Dynamic Surface Control for Fractional-Order Nonlinear Strict-Feedback Systems With Input Constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3575-3586.	9.3	63
18	Reduced-order observer design for the synchronization of the generalized Lorenz chaotic systems. Applied Mathematics and Computation, 2012, 218, 7614-7621.	2.2	62

#	Article	IF	CITATIONS
19	Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays. Applied Mathematics and Computation, 2019, 355, 21-32.	2.2	55
20	Output-feedback stabilization of singular LPV systems subject to inexact scheduling parameters. Automatica, 2019, 104, 1-7.	5.0	55
21	Sampling-interval-dependent stability for sampled-data systems with state quantization. International Journal of Robust and Nonlinear Control, 2014, 24, 2995-3008.	3.7	53
22	Neural networks-based adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Journal of the Franklin Institute, 2018, 355, 5503-5519.	3.4	51
23	Event-Triggered Adaptive Neural Network Control for Nonstrict-Feedback Nonlinear Time-Delay Systems With Unknown Control Directions. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 4196-4205.	11.3	51
24	Adaptive tracking control for uncertain switched stochastic nonlinear pure-feedback systems with unknown backlash-like hysteresis. Journal of the Franklin Institute, 2017, 354, 1801-1818.	3.4	50
25	Fractional-order adaptive neuro-fuzzy sliding mode Hâ^ž control for fuzzy singularly perturbed systems. Journal of the Franklin Institute, 2019, 356, 5027-5048.	3.4	50
26	Delay-dependent state feedback stabilization for a networked control model with two additive input delays. Applied Mathematics and Computation, 2015, 265, 748-758.	2.2	46
27	Robust adaptive outputâ€feedback control for a class of nonlinear systems with timeâ€varying actuator faults. International Journal of Adaptive Control and Signal Processing, 2010, 24, 743-759.	4.1	45
28	Reducedâ€order observerâ€based outputâ€feedback tracking control of nonlinear systems with state delay and disturbance. International Journal of Robust and Nonlinear Control, 2010, 20, 1723-1738.	3.7	45
29	Accurate Cooperative Control for Multiple Leaders Multiagent Uncertain Systems: A Two-Layer Node-to-Node Communication Framework. IEEE Transactions on Industrial Informatics, 2018, 14, 2395-2405.	11.3	45
30	Cooperative Tracking Control of Multiagent Systems: A Heterogeneous Coupling Network and Intermittent Communication Framework. IEEE Transactions on Cybernetics, 2019, 49, 4308-4320.	9.5	44
31	Nonfragile Quantized \$H_infty\$ Filtering for Discrete-Time Switched T–S Fuzzy Systems With Local Nonlinear Models. IEEE Transactions on Fuzzy Systems, 2021, 29, 1507-1517.	9.8	43
32	Tuning functionsâ€based robust adaptive tracking control of a class of nonlinear systems with time delays. International Journal of Robust and Nonlinear Control, 2012, 22, 1631-1646.	3.7	40
33	Adaptive fuzzy control for a marine vessel with timeâ€varying constraints. IET Control Theory and Applications, 2018, 12, 1448-1455.	2.1	39
34	Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time–space fractional reaction–diffusion equation. Applied Mathematics Letters, 2018, 85, 157-163.	2.7	39
35	Extended dissipativity-based synchronization of uncertain chaotic neural networks with actuator failures. Journal of the Franklin Institute, 2015, 352, 1722-1738.	3.4	37
36	Observer-based mixed passive and <mml:math altimg="si3.gif" display="inline" id="d1e800" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>l:m8≥5:/mm</td><td>ıl:n3170w></td></mml:mi></mml:mrow></mml:msub></mml:math>	l:m 8 ≥5:/mm	ıl:n 317 0w>

#	Article	IF	CITATIONS
37	Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Neurocomputing, 2017, 245, 124-132.	5.9	36
38	Further Results on Adaptive Stabilization of High-Order Stochastic Nonlinear Systems Subject to Uncertainties. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 225-234.	11.3	36
39	Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons. Physics of Plasmas, 2015, 22, 052306.	1.9	35
40	Exact tracking control of uncertain nonâ€linear systems with additive disturbance. IET Control Theory and Applications, 2015, 9, 736-744.	2.1	32
41	Prescribed performance distributed consensus control for nonlinear multi-agent systems with unknown dead-zone input. International Journal of Control, 2018, 91, 1053-1065.	1.9	32
42	Adaptive neuro-fuzzy backstepping dynamic surface control for uncertain fractional-order nonlinear systems. Neurocomputing, 2019, 360, 172-184.	5.9	32
43	Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities. Applied Mathematics and Computation, 2019, 360, 1-13.	2.2	32
44	Adaptive actuator failure compensation with unknown control gain signs. IET Control Theory and Applications, 2011, 5, 1859-1867.	2.1	31
45	Two novel general summation inequalities to discrete-time systems with time-varying delay. Journal of the Franklin Institute, 2017, 354, 5537-5558.	3.4	29
46	Adaptive neural network tracking control for uncertain nonlinear systems with input delay and saturation. International Journal of Robust and Nonlinear Control, 2020, 30, 2593-2610.	3.7	29
47	Adaptive finite-time flocking for uncertain nonlinear multi-agent systems with connectivity preservation. Neurocomputing, 2018, 275, 1903-1910.	5.9	28
48	Nonâ€fragile mixed â,, _{â^ž} / <i>l</i> ₂ â^' <i>l</i> _{â^ž} synchronic control for complex networks with Markov jumpingâ€switching topology under unreliable communication links. IET Control Theory and Applications, 2014, 8, 2207-2218.	isation 2.1	26
49	Adaptive output feedback tracking of nonlinear systems with uncertain nonsymmetric dead-zone input. ISA Transactions, 2019, 95, 35-44.	5.7	26
50	Global secondâ€order sliding mode control for nonlinear uncertain systems. International Journal of Robust and Nonlinear Control, 2019, 29, 224-237.	3.7	26
51	Reliable filter design for discrete-time neural networks with Markovian jumping parameters and time-varying delay. Journal of the Franklin Institute, 2020, 357, 2892-2915.	3.4	26
52	Adaptive Control of Uncertain Nonlinear Time-Delay Systems With External Disturbance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1288-1295.	9.3	25
53	Nonlinear adaptive learning control for unknown timeâ€varying parameters and unknown timeâ€varying delays. Asian Journal of Control, 2011, 13, 903-913.	3.0	24
54	Adaptive control for a class of nonlinear time-delay systems with dead-zone input. Journal of the Franklin Institute, 2016, 353, 4400-4421.	3.4	24

#	Article	IF	CITATIONS
55	Feedback Stabilization of Uncertain Networked Control Systems Over Delayed and Fading Channels. IEEE Transactions on Control of Network Systems, 2021, 8, 260-268.	3.7	24
56	Adaptive finite-time control for stochastic nonlinear systems subject to unknown covariance noise. Journal of the Franklin Institute, 2018, 355, 2645-2661.	3.4	23
57	Adaptive backstepping control for strictâ€feedback nonâ€linear systems with input delay and disturbances. IET Control Theory and Applications, 2019, 13, 506-516.	2.1	23
58	Globally adaptive asymptotic tracking control of nonlinear systems using nonlinearly parameterized fuzzy approximator. Journal of the Franklin Institute, 2015, 352, 2783-2795.	3.4	22
59	Fully-Automatic Segmentation Of Kidneys In Clinical Ultrasound Images Using A Boundary Distance Regression Network., 2019, 2019, 1741-1744.		21
60	Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays. Applied Mathematics and Computation, 2021, 391, 125630.	2.2	21
61	Adaptive stabilization of uncertain unified chaotic systems with nonlinear input. Applied Mathematics and Computation, 2011, 218, 4260-4267.	2.2	20
62	Exponential synchronization of Genesio? Tesi chaotic systems with partially known uncertainties and completely unknown dead-zone nonlinearity. Journal of the Franklin Institute, 2013, 350, 347-357.	3.4	20
63	\hat{l}_{\pm} -Dissipativity filtering for singular Markovian jump systems with distributed delays. Signal Processing, 2017, 134, 149-157.	3.7	20
64	Adaptive finiteâ€time eventâ€triggered control for nonlinear systems with quantized input signals. International Journal of Robust and Nonlinear Control, 2021, 31, 4764-4781.	3.7	20
65	Multi-instance Deep Learning with Graph Convolutional Neural Networks for Diagnosis of Kidney Diseases Using Ultrasound Imaging. Lecture Notes in Computer Science, 2019, 11840, 146-154.	1.3	20
66	State Quantized Output Feedback Control for Nonlinear Systems via Event-Triggered Sampling. IEEE Transactions on Automatic Control, 2022, 67, 6810-6817.	5.7	20
67	Dissipative filter design for uncertain Markovian jump systems with mixed delays and unknown transition rates. Signal Processing, 2017, 141, 176-186.	3.7	19
68	Finiteâ€time tracking control of uncertain nonholonomic systems by state and output feedback. International Journal of Robust and Nonlinear Control, 2018, 28, 1942-1959.	3.7	19
69	Extended dissipative filter design for T-S fuzzy systems with multiple time delays. ISA Transactions, 2018, 80, 22-34.	5.7	19
70	Event-Based Control for Networked T–S Fuzzy Systems via Auxiliary Random Series Approach. IEEE Transactions on Cybernetics, 2020, 50, 2166-2175.	9.5	19
71	Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls. Nonlinear Dynamics, 2015, 81, 695-706.	5.2	18
72	Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form. Journal of the Franklin Institute, 2018, 355, 3911-3925.	3.4	18

#	Article	lF	CITATIONS
73	Stabilization of discrete time stochastic system with input delay and control dependent noise. Systems and Control Letters, 2019, 123, 62-68.	2.3	18
74	Multi-instance Deep Learning of Ultrasound Imaging Data for Pattern Classification of Congenital Abnormalities of the Kidney and Urinary Tract in Children. Urology, 2020, 142, 183-189.	1.0	18
75	Push-Sum Distributed Online Optimization With Bandit Feedback. IEEE Transactions on Cybernetics, 2022, 52, 2263-2273.	9.5	18
76	Adaptive backstepping control that is equivalent to tuning functions design. International Journal of Control, Automation and Systems, 2016, 14, 90-98.	2.7	17
77	Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024. Journal of Alloys and Compounds, 2018, 749, 978-989.	5.5	17
78	Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances. Journal of the Franklin Institute, 2020, 357, 3721-3740.	3.4	17
79	Finite difference/Hermite–Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction–diffusion equation in unbounded domains. Applied Mathematical Modelling, 2019, 70, 246-263.	4.2	16
80	A matrix decomposition based adaptive control scheme for a class of MIMO non-canonical approximation systems. Automatica, 2019, 103, 490-502.	5.0	16
81	Delay-dependent H â^ž control for jumping delayed systems with two Markov processes. International Journal of Control, Automation and Systems, 2011, 9, 437-441.	2.7	15
82	Leader-following rendezvous for uncertain Euler–Lagrange multi-agent systems by output feedback. Journal of the Franklin Institute, 2017, 354, 4215-4230.	3.4	15
83	Dissipative Fuzzy Filtering for Nonlinear Networked Systems With Limited Communication Links. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 962-971.	9.3	15
84	Extended Dissipativity-Based Control for Hidden Markov Jump Singularly Perturbed Systems Subject to General Probabilities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5752-5761.	9.3	15
85	Adaptive Tracking for Uncertain MIMO Nonlinear Systems With Time-Varying Parameters and Bounded Disturbance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4479-4491.	9.3	15
86	Adaptive synchronization of single-degree-of-freedom oscillators with unknown parameters. Applied Mathematics and Computation, 2012, 218, 6833-6840.	2.2	14
87	Robust outputâ€feedback finiteâ€time regulator of systems with mismatched uncertainties bounded by positive functions. IET Control Theory and Applications, 2017, 11, 3107-3114.	2.1	14
88	Finite-time leader-following rendezvous for Euler–Lagrange multi-agent systems with an uncertain leader. Transactions of the Institute of Measurement and Control, 2018, 40, 1766-1775.	1.7	14
89	An efficient finite difference/Hermite–Galerkin spectral method for time-fractional coupled sine–Gordon equations on multidimensional unbounded domains and its application in numerical simulations of vector solitons. Computer Physics Communications, 2019, 237, 110-128.	7. 5	14
90	Finiteâ€time stabilization for a class of stochastic lowâ€order nonlinear systems with unknown control coefficients. International Journal of Robust and Nonlinear Control, 2020, 30, 2386-2398.	3.7	14

#	Article	IF	CITATIONS
91	Zero-error tracking control of uncertain nonlinear systems in the presence of actuator hysteresis. International Journal of Systems Science, 2015, 46, 2853-2864.	5.5	13
92	Adaptive finiteâ€time stabilization of nonlinearly parameterized systems subject to mismatching disturbances. International Journal of Robust and Nonlinear Control, 2019, 29, 3469-3484.	3.7	13
93	A linearized finite difference/spectral-Galerkin scheme for three-dimensional distributed-order time–space fractional nonlinear reaction–diffusion-wave equation: Numerical simulations of Gordon-type solitons. Computer Physics Communications, 2020, 252, 107144.	7.5	13
94	Global practical tracking for nonlinear systems with uncertain dead-zone input via output feedback. Journal of the Franklin Institute, 2021, 358, 2987-3009.	3.4	13
95	Adaptive output feedback tracking for time-delay nonlinear systems with unknown control coefficient and application to chemical reactors. Information Sciences, 2021, 581, 755-772.	6.9	13
96	Asynchronous nonfragile <mml:math altimg="si7.svg" display="inline" id="d1e393" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>nl:nsi5<td>ml:#12row></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	nl:n si 5 <td>ml:#12row></td>	ml :#12 row>
97	Systems, 2020, 37, 100911. Reduced-Order Filters-Based Adaptive Backstepping Control for Perturbed Nonlinear Systems. IEEE Transactions on Cybernetics, 2022, 52, 8388-8398.	9.5	12
98	Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity and unknown gain signs. International Journal of Control, 0 , 1 -18.	1.9	11
99	Adaptive neural control of switched nonstrict-feedback nonlinear systems with multiple time-varying delays. Journal of the Franklin Institute, 2017, 354, 8180-8199.	3.4	11
100	Robust predictive scheme for input delay systems subject to nonlinear disturbances. Nonlinear Dynamics, 2018, 93, 1035-1045.	5.2	11
101	A neural composite dynamic surface control for pureâ€feedback systems with unknown control gain signs and full state constraints. International Journal of Robust and Nonlinear Control, 2019, 29, 5720-5743.	3.7	11
102	Sampled-data controller design and stability analysis for nonlinear systems with input saturation and disturbances. Applied Mathematics and Computation, 2019, 360, 14-27.	2.2	11
103	Nonfragile Hâ^ž observer design for uncertain nonlinear switched systems with quantization. Applied Mathematics and Computation, 2020, 386, 125435.	2.2	11
104	New reliable <i>H</i> _{<i>â^ž</i>} filter design for singular Markovian jump timeâ€delay systems with sensor failures. International Journal of Robust and Nonlinear Control, 2021, 31, 4361-4377.	3.7	11
105	New results on stabilization for neutral type descriptor hybrid systems with time-varying delays. Nonlinear Analysis: Hybrid Systems, 2022, 45, 101172.	3.5	11
106	Dissipative controller design for uncertain neutral systems with semiâ€Markovian jumping parameters. Optimal Control Applications and Methods, 2018, 39, 888-903.	2.1	10
107	Event-triggered fault detection for T-S fuzzy systems subject to data losses. International Journal of Systems Science, 2020, 51, 1162-1173.	5.5	10
108	Observerâ€based neural control for MIMO pureâ€feedback nonâ€linear systems with input saturation and disturbances. IET Control Theory and Applications, 2016, 10, 2314-2324.	2.1	9

#	Article	IF	CITATIONS
109	A connectivity preserving rendezvous for unicycle agents with heterogenous input disturbances. Journal of the Franklin Institute, 2018, 355, 4248-4267.	3.4	9
110	Exponentially admissibility of neutral singular systems with mixed interval time-varying delays. Journal of the Franklin Institute, 2021, 358, 6723-6740.	3.4	9
111	Finiteâ€time stabilization of stochastic nonlinear systems with SilSS inverse dynamics. International Journal of Robust and Nonlinear Control, 2017, 27, 4648-4663.	3.7	8
112	Exponential tracking of adaptive control systems. Science China Information Sciences, 2018, 61, 1.	4.3	8
113	Heuristic rule for non-stationary iterated Tikhonov regularization in Banach spaces. Inverse Problems, 2018, 34, 115002.	2.0	8
114	Event-triggering <mml:math altimg="si23.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž</mml:mi></mml:mrow><td>> < þæml:m</td><td>row></td></mml:mrow></mml:mrow></mml:math>	> < þæ ml:m	row>
115	controller. Neurocomputing, 2020, 407, 221-231. Adaptive Stabilization of Uncertain Nonlinear Systems Under Output Constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3957-3966.	9.3	8
116	Output feedback robust stabilisation for uncertain nonâ€linear systems with deadâ€zone input. IET Control Theory and Applications, 2020, 14, 1828-1836.	2.1	8
117	Distributed online convex optimization with a bandit primal-dual mirror descent push-sum algorithm. Neurocomputing, 2022, 497, 204-215.	5.9	8
118	Synchronisation control of two identical chaotic Liu systems with known and unknown parameters. International Journal of Modelling, Identification and Control, 2012, 17, 166.	0.2	7
119	Nonlinear control for uncertain nonlinear systems with unknown control directions using less or no parameter estimates. International Journal of Adaptive Control and Signal Processing, 2015, 29, 741-764.	4.1	7
120	Analysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization terms. Inverse Problems, 2020, 36, 075002.	2.0	7
121	Nonfragile <i>H</i> _{â^ž} Control for Uncertain Takagi–Sugeno Fuzzy Systems Under Digital Communication Channels and Its Application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3638-3647.	9.3	7
122	Asynchronous observer-based finite-time control for nonlinear Markovian jump systems with time-varying delays. Nonlinear Dynamics, 2021, 104, 509-521.	5.2	7
123	Semi-implicit Hermite–Galerkin Spectral Method for Distributed-Order Fractional-in-Space Nonlinear Reaction–Diffusion Equations in Multidimensional Unbounded Domains. Journal of Scientific Computing, 2020, 85, 1.	2.3	6
124	Hâ^ž control for uncertain discrete-time MJSs with piecewise-constant transition probabilities subject to multiple intermittent sensor faults. Journal of the Franklin Institute, 2020, 357, 10211-10226.	3.4	6
125	Adaptive neural control of state-constrained MIMO nonlinear systems with unmodeled dynamics. Nonlinear Dynamics, 2022, 108, 4005-4020.	5.2	6
	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math>		

*mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
id="M1"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><

#	Article	IF	Citations
127	Flocking with connectivity preservation for disturbed nonlinear multi-agent systems by output feedback. International Journal of Control, 2018, 91, 1066-1075.	1.9	5
128	Practical Stabilization of Networked Takagi–Sugeno Fuzzy Systems via Improved Jensen Inequalities. IEEE Transactions on Cybernetics, 2022, 52, 4381-4390.	9.5	5
129	Fuzzy-Approximation Adaptive Prescribed Performance Output Regulation for Uncertain Nonlinear Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4300-4310.	9.3	5
130	Reachable set estimation and controller design forÂdiscreteâ€time singularly perturbed systems withÂtimeâ€varying delay. International Journal of Robust and Nonlinear Control, 2021, 31, 7207-7218.	3.7	5
131	Adaptive quantitative control for robust <mml:math altimg="si10.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl :‱ >â^ž∢	:/n 5 ml:mi> </td
132	Dynamic Gain Reduced-Order Observer-Based Global Adaptive Neural-Network Tracking Control for Nonlinear Time-Delay Systems. IEEE Transactions on Cybernetics, 2023, 53, 7105-7114.	9.5	5
133	Adaptive tracking control for actuator failure compensation based on MT-filters. Journal of Systems Science and Complexity, 2010, 23, 759-768.	2.8	4
134	Guaranteed cost fuzzy tracking control for nonlinear polynomial systems with input saturation. Journal of the Franklin Institute, 2017, 354, 8293-8311.	3.4	4
135	Evolution of surface morphology and optical transmittance of single crystal diamond film by epitaxial growth. AIP Advances, 2019, 9, 095048.	1.3	4
136	Robust Exact Predictive Scheme for Output-Feedback Control of Input-Delay Systems With Unmatched Sinusoidal Disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5357-5366.	9.3	4
137	Computer-Aided Diagnosis of Congenital Abnormalities of the Kidney and Urinary Tract in Children Using a Multi-Instance Deep Learning Method Based on Ultrasound Imaging Data., 2020, 2020, 1347-1350.		4
138	Globally Adaptive Neural Network Tracking for Uncertain Output-Feedback Systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 814-823.	11.3	4
139	Stabilization Control for Strict-Feedback Nonlinear Systems With Time Delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7549-7560.	9.3	4
140	Adaptive Asymptotic Tracking of Nonlinear Systems Using Nonlinearly Parameterized First-Order Sugeno Fuzzy Approximator. International Journal of Fuzzy Systems, 2018, 20, 1079-1087.	4.0	3
141	Distributed flocking for disturbed multiple unicycle systems under directed topologies. International Journal of Robust and Nonlinear Control, 2018, 28, 5033-5049.	3.7	3
142	Further results on delayâ€dependent H â^ž filtering for singular systems with interval timeâ€varying delays. Optimal Control Applications and Methods, 2021, 42, 1001-1015.	2.1	3
143	Robust adaptive stabilization of nonlinear systems with mismatched time delays. Journal of Process Control, 2021, 105, 214-222.	3.3	3
144	Molecular and clinical progress in follicular lymphoma lacking the t(14;18) translocation (Review). International Journal of Oncology, 2020, 56, 7-17.	3.3	3

#	Article	IF	CITATIONS
145	Integrated stabilisation policy over multipath routingâ€enabled network. IET Control Theory and Applications, 2020, 14, 3312-3319.	2.1	3
146	Adaptive Boundary Observer Design for Coupled Parabolic PDEs With Different Diffusions and Parameter Uncertainty. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 3037-3047.	5.4	3
147	Practical stability of a nonlinear system with delayed control input. Applied Mathematics and Computation, 2022, 423, 127008.	2.2	3
148	An HTN-Based Mission Planning Model and Algorithm for Autonomous Spacecraft., 0,,.		2
149	Limit Circle/Limit Point Criteria for Second-Order Superlinear Differential Equations with a Damping Term. Journal of Applied Mathematics, 2012, 2012, 1-11.	0.9	2
150	Simple Adaptive Asymptotic Tracking Scheme for Parametric Strict-Feedback Nonlinear Systems with Additive Disturbance. Mathematical Problems in Engineering, 2013, 2013, 1-7.	1.1	2
151	Sampling-interval-dependent exponential stability for a networked control system model of sampled-data systems. , 2014, , .		2
152	Robust adaptive control of an uncertain nonlinear system with application to Chua's circuit., 2018,,.		2
153	Research on Regenerative Braking Torque Ripple Suppression of Brushless DC Motor. , 2019, , .		2
154	An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems. IEEE Transactions on Cybernetics, 2021, 51, 5728-5739.	9.5	2
155	Global stabilisation for a class of stochastic continuous nonâ€linear systems with timeâ€varying delay. IET Control Theory and Applications, 2021, 15, 297-306.	2.1	2
156	Optimal adaptive tracking consensus for multi-vehicle systems with periodic sampling. , 2017, , .		1
157	Relative Degrees and Implicit Function-Based Control of Discrete-Time Noncanonical Form Neural Network Systems. IEEE Transactions on Cybernetics, 2020, 50, 514-524.	9.5	1
158	Controller Design for Nonlinear Uncertain Systems with Time Delays via Backstepping Method. IFAC-PapersOnLine, 2021, 54, 18-22.	0.9	1
159	Adaptive control of a voltage-controlled magnetic levitation system with K-filter. , 2020, , .		1
160	Fuzzy Control for Networked Systems Using Quantizer with Triggering Strategy. , 2020, , .		1
161	Globally Adaptive Neural Network Output-Feedback Control for Uncertain Nonlinear Systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 9078-9087.	11.3	1
162	Control of sampled-data systems using a saturated quantizer. , 2014, , .		O

#	Article	IF	CITATIONS
163	An alternative scheme for adaptive backstepping control. , 2014, , .		O
164	Adaptive control of nonlinear systems using nonlinearly parameterized fuzzy approximator., 2014,,.		0
165	Optimal tracking cooperative control for multi-agent systems with periodic sampling via robust model predictive control approach. , 2017, , .		O
166	Model Reference Adaptive Control for Time-Delay Systems. , 2018, , .		0
167	Decentralized Robust Adaptive Output-Feedback Control for A Class of Large-Scale Stochastic Time-Delay Nonlinear Systems. , 2018, , .		O
168	Reduced-order filter based output-feedback adaptive control for perturbed nonlinear systems. , 2021, , .		0
169	Asymptotic Stabilization Adaptive Controller Design For Mismatched Interconnected Time Delay Systems. , 2020, , .		O
170	State Perception Event-triggered Communication Scheme for Networked Control Systems. , 2020, , .		0
171	Asymptotic stabilization for nonlinear systems with timeâ€varying delays. IET Control Theory and Applications, 0, , .	2.1	O
172	Globally Stable Adaptive Neural Network Tracking Control for Uncertain Output-Feedback Systems With Prior Tracking Accuracy. , 2021, , .		0
173	A fast iterative method for identifying the radiogenic source for the helium production-diffusion equation., 2022, 30, 521-540.		O