List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/582343/publications.pdf Version: 2024-02-01

PAKEZ KAVED

#	Article	IF	CITATIONS
1	The amyloid concentric βâ€barrel hypothesis: Models of amyloid beta 42 oligomers and annular protofibrils. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1190-1209.	1.5	5
2	Aβ/tau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer's disease. Cellular and Molecular Life Sciences, 2022, 79, 222.	2.4	14
3	Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer's disease. Journal of Biological Chemistry, 2022, 298, 101766.	1.6	20
4	Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Progress in Neurobiology, 2022, 214, 102270.	2.8	77
5	Post-translational Modifications of the p53 Protein and the Impact in Alzheimer's Disease: A Review of the Literature. Frontiers in Aging Neuroscience, 2022, 14, 835288.	1.7	11
6	Tau modulates mRNA transcription, alternative polyadenylation (APA) profiles of hnRNPs, chromatin remodeling and spliceosome complexes. FASEB Journal, 2022, 36, .	0.2	0
7	Quantification and targeting of elusive neurotoxic amyloid oligomers. Cell Reports Medicine, 2022, 3, 100636.	3.3	1
8	Alzheimer's disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain, 2021, 144, 288-309.	3.7	132
9	Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. Biomedicines, 2021, 9, 173.	1.4	10
10	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
11	Early alterations of neurovascular unit in the retina in mouse models of tauopathy. Acta Neuropathologica Communications, 2021, 9, 51.	2.4	11
12	Tau induces formation of \hat{l}_{\pm} -synuclein filaments with distinct molecular conformations. Biochemical and Biophysical Research Communications, 2021, 554, 145-150.	1.0	13
13	Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Reports, 2021, 36, 109419.	2.9	78
14	Infectious etiology and amyloidosis in Alzheimer's disease: The puzzle continues. Journal of Biological Chemistry, 2021, 297, 100936.	1.6	7
15	Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell, 2021, 20, e13455.	3.0	16
16	Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nature Communications, 2021, 12, 6292.	5.8	10
17	Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes. Frontiers in Molecular Neuroscience, 2021, 14, 742790.	1.4	26
18	Caspase inhibition mitigates tau cleavage and neurotoxicity in iPSCâ€induced neurons with the V337MÂ <i>MAPTÂ</i> mutation. Alzheimer's and Dementia, 2021, 17, e051471.	0.4	2

#	Article	IF	CITATIONS
19	AD- and PSP-specific brain-derived tau oligomers engage synapses with different dynamic Alzheimer's and Dementia, 2021, 17 Suppl 3, e054394.	0.4	0
20	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Progress in Neurobiology, 2020, 184, 101716.	2.8	98
21	Advances and considerations in AD tau-targeted immunotherapy. Neurobiology of Disease, 2020, 134, 104707.	2.1	70
22	TDP-43 and Tau Oligomers in Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Neurobiology of Disease, 2020, 146, 105130.	2.1	55
23	Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimer's Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. Journal of Alzheimer's Disease, 2020, 78, 1661-1678.	1.2	28
24	P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 132.	2.4	78
25	Modulating disease-relevant tau oligomeric strains by small molecules. Journal of Biological Chemistry, 2020, 295, 14807-14825.	1.6	35
26	RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. Nature Communications, 2020, 11, 4305.	5.8	60
27	Elucidating the pathogenic mechanisms of AD brainâ€derived, tauâ€containing extracellular vesicles: Highly transmissible and preferential propagation to GABAergic neurons. Alzheimer's and Dementia, 2020, 16, e037316.	0.4	1
28	Differential dynamics of AÎ ² and tau oligomer synaptic binding may suggest diverse therapeutic targets for early vs. late Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e038045.	0.4	0
29	Innate immune activation of the NLRP3 inflammasome pathway drives tau pathology. Alzheimer's and Dementia, 2020, 16, e039815.	0.4	0
30	Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. Journal of Parkinson's Disease, 2020, 10, 1-28.	1.5	40
31	Polymorphic α-Synuclein Strains Modified by Dopamine and Docosahexaenoic Acid Interact Differentially with Tau Protein. Molecular Neurobiology, 2020, 57, 2741-2765.	1.9	25
32	Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death and Disease, 2020, 11, 314.	2.7	56
33	Near Infrared Light Treatment Reduces Synaptic Levels of Toxic Tau Oligomers in Two Transgenic Mouse Models of Human Tauopathies. Molecular Neurobiology, 2019, 56, 3341-3355.	1.9	28
34	Tau oligomers mediate aggregation of RNAâ€binding proteins Musashi1 and Musashi2 inducing Lamin alteration. Aging Cell, 2019, 18, e13035.	3.0	28
35	Neurotoxic tau oligomers after single versus repetitive mild traumatic brain injury. Brain Communications, 2019, 1, fcz004.	1.5	35
36	Tau Interacts with the C-Terminal Region of α-Synuclein, Promoting Formation of Toxic Aggregates with Distinct Molecular Conformations. Biochemistry, 2019, 58, 2814-2821.	1.2	55

#	Article	IF	CITATIONS
37	P4â€520: TAU OLIGOMERS MEDIATE AGGREGATION OF RNAâ€BINDING PROTEINS MUSASHI1―AND MUSASHI2â€INDUCING NUCLEAR MEMBRANE ALTERATION IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P1513.	0.4	0
38	NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575, 669-673.	13.7	782
39	Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives. Scientific Reports, 2019, 9, 19011.	1.6	50
40	Amyloid oligomer interactions and polymorphisms: disease-relevant distinct assembly of α-synuclein and tau. Neuropsychopharmacology, 2019, 44, 222-223.	2.8	1
41	Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 89-102.	1.8	27
42	Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. Npj Vaccines, 2018, 3, 9.	2.9	45
43	Azure C Targets and Modulates Toxic Tau Oligomers. ACS Chemical Neuroscience, 2018, 9, 1317-1326.	1.7	30
44	α-Synuclein Oligomers Induce a Unique Toxic Tau Strain. Biological Psychiatry, 2018, 84, 499-508.	0.7	65
45	O2â€02â€06: PROPAGATION AND DIVERSE EFFECTS OF DISEASEâ€SPECIFIC PRION‣IKE TAU OLIGOMERIC STI Alzheimer's and Dementia, 2018, 14, P612.	RAINS. 0.4	0
46	P1â€021: TOXICITY AND PROPAGATION OF TBI BRAINâ€ÐERIVED SOLUBLE TAU STRAINS. Alzheimer's and Dementia, 2018, 14, P273.	0.4	0
47	O2â€01â€03: SELECTED MICRO RNAS FROM NEURAL STEM CELL–DERIVED EXOSOMES INCREASE SYNAPTIC RESILIENCE TO TAU AND Aβ OLIGOMERS. Alzheimer's and Dementia, 2018, 14, P609.	0.4	0
48	P3â€170: INCREASED SYNAPTIC SENSITIVITY TO Aβ AND TAU OLIGOMERS IN THE AGING CNS AS A FUNCTION C DECREASING NEURAL STEM CELLS. Alzheimer's and Dementia, 2018, 14, P1133.)F _{0.4}	0
49	P3â€167: INHIBITION OF PHOSPHOLIPASE D1 AS A THERAPEUTIC IN ADâ€RELATED MEMORY DEFICITS. Alzheime and Dementia, 2018, 14, P1131.	er's 0.4	0
50	P4â€023: TAU IMMUNOTHERAPY FOR ALPHAâ€SYNUCLEINOPATHY. Alzheimer's and Dementia, 2018, 14, P1442	2. 0.4	0
51	P1â€025: EXOSOMES CONTAINING SPECIFIC TAU OLIGOMER FORMATIONS ACCELERATE PATHOLOGICAL TAU PHOSPHORYLATION IN C57BL/6 MICE. Alzheimer's and Dementia, 2018, 14, P275.	0.4	1
52	O5â€05â€06: EVALUATING TAU OLIGOMERS PASSIVE IMMUNOTHERAPY USING AGED TRANSGENIC ANIMALS O TAUOPATHY. Alzheimer's and Dementia, 2018, 14, P1657.	F _{0.4}	0
53	O4â€05â€04: Tau Immunotherapy for Alpha‣ynucleinopathy. Alzheimer's and Dementia, 2018, 14, P1412.	0.4	0
54	AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau		16

Oligomer Formation. , 2018, 59, 4670.

#	Article	IF	CITATIONS
55	Formation of Toxic Oligomeric Assemblies of RNA-binding Protein: Musashi in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 113.	2.4	28
56	Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Molecular Neurodegeneration, 2018, 13, 13.	4.4	60
57	Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. Chemical Communications, 2018, 54, 10120-10123.	2.2	19
58	Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and crossâ€seeding behavior. Protein Science, 2018, 27, 1901-1909.	3.1	88
59	Preparation and Characterization of Tau Oligomer Strains. Methods in Molecular Biology, 2018, 1779, 113-146.	0.4	13
60	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017, 94, 278-293.e9.	3.8	730
61	Tau Oligomers in Sera of Patients with Alzheimer's Disease and Aged Controls. Journal of Alzheimer's Disease, 2017, 58, 471-478.	1.2	32
62	Selective lowering of synapsins induced by oligomeric α-synuclein exacerbates memory deficits. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4648-E4657.	3.3	45
63	Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Annals of Clinical and Translational Neurology, 2017, 4, 226-235.	1.7	72
64	Critical Role of the CXCL10/C-X-C Chemokine Receptor 3 Axis in Promoting Leukocyte Recruitment and Neuronal Injury during Traumatic Optic Neuropathy Induced by Optic Nerve Crush. American Journal of Pathology, 2017, 187, 352-365.	1.9	33
65	Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo. Methods in Molecular Biology, 2017, 1523, 141-157.	0.4	30
66	[F4–07–03]: TAU OLIGOMERIC STRAINS IN SYNUCLEINOPATHIES. Alzheimer's and Dementia, 2017, 13, P12	190.4	0
67	[P4–456]: TAU AND P53 IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1505.	0.4	1
68	[P4–406]: INVESTIGATING THE POTENTIAL OF NOVEL CURCUMIN DERIVATIVES IN TARGETING AND MODULATING TOXIC TAU OLIGOMERIC STRAINS. Alzheimer's and Dementia, 2017, 13, P1486.	0.4	0
69	Oligomer Formation and Cross‧eeding: The New Frontier. Israel Journal of Chemistry, 2017, 57, 665-673.	1.0	8
70	[O1–07–03]: SYNAPTIC RESILIENCE TO TAU AND AMYLOID BETA OLIGOMERS INDUCED BY NEURAL STEM CELLâ€ÐERIVED EXOSOMES. Alzheimer's and Dementia, 2017, 13, P205.	0.4	0
71	[P4–451]: TBI AND AD: SIMILAR TAUâ€INDUCED NEURODEGENERATION?. Alzheimer's and Dementia, 2017, 1 P1503.	^{3,} 0.4	0
72	Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer's Disease and Related		82

Tauopathies. , 2017, 8, 257.

#	Article	IF	CITATIONS
73	Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2016, 55, 1083-1099.	1.2	138
74	The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine, 2016, 6, 42-49.	2.7	534
75	Potential mechanisms and implications for the formation of tau oligomeric strains. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 482-496.	2.3	64
76	Aβ Amyloid Pathology Affects the Hearts of PatientsÂWithÂAlzheimer's Disease. Journal of the American College of Cardiology, 2016, 68, 2395-2407.	1.2	132
77	Tau Oligomers Derived from Traumatic Brain Injury Cause Cognitive Impairment and Accelerate Onset of Pathology in Htau Mice. Journal of Neurotrauma, 2016, 33, 2034-2043.	1.7	75
78	Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. Neurobiology of Disease, 2016, 87, 19-28.	2.1	54
79	Therapeutic Approaches Targeting Pathological Tau Aggregates. Current Pharmaceutical Design, 2016, 22, 4028-4039.	0.9	15
80	The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell, 2015, 14, 715-724.	3.0	61
81	Pathological Interface Between Oligomeric Alpha-Synuclein and Tau in Synucleinopathies. Biological Psychiatry, 2015, 78, 672-683.	0.7	140
82	Tau Immunotherapy Modulates Both Pathological Tau and Upstream Amyloid Pathology in an Alzheimer's Disease Mouse Model. Journal of Neuroscience, 2015, 35, 4857-4868.	1.7	122
83	Antibody against Small Aggregated Peptide Specifically Recognizes Toxic Aβ-42 Oligomers in Alzheimer's Disease. ACS Chemical Neuroscience, 2015, 6, 1981-1989.	1.7	16
84	Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiology of Disease, 2015, 82, 540-551.	2.1	59
85	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. ELife, 2015, 4, .	2.8	29
86	Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. ELife, 2015, 4, .	2.8	16
87	Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target?. ImmunoTargets and Therapy, 2014, 3, 19.	2.7	11
88	Specific Targeting of Tau Oligomers in Htau Mice Prevents Cognitive Impairment and Tau Toxicity Following Injection with Brain-Derived Tau Oligomeric Seeds. Journal of Alzheimer's Disease, 2014, 40, S97-S111.	1.2	145
89	The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathologica Communications, 2014, 2, 56.	2.4	62
90	Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathologica Communications, 2014, 2, 73.	2.4	76

#	Article	IF	CITATIONS
91	Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochemical Pharmacology, 2014, 88, 468-478.	2.0	93
92	Passive Immunization with Tau Oligomer Monoclonal Antibody Reverses Tauopathy Phenotypes without Affecting Hyperphosphorylated Neurofibrillary Tangles. Journal of Neuroscience, 2014, 34, 4260-4272.	1.7	241
93	Advances in Therapeutics for Neurodegenerative Tauopathies: Moving toward the Specific Targeting of the Most Toxic Tau Species. ACS Chemical Neuroscience, 2014, 5, 752-769.	1.7	63
94	TDP-43 Phosphorylation by casein kinase lε promotes oligomerization and enhances toxicity in vivo. Human Molecular Genetics, 2014, 23, 1025-1035.	1.4	83
95	Amyloid-β oligomers as a template for secondary amyloidosis in Alzheimer's disease. Neurobiology of Disease, 2014, 71, 14-23.	2.1	55
96	P1-122: OLIGOMERS OF A-SYNUCLEIN CROSS-SEED TAU AND EXTEND LIFETIME OF TAU TOXIC CONFORMATION. , 2014, 10, P345-P345.		0
97	P3-066: TDP-43 HYBRID OLIGOMERS IN ALZHEIMER'S DISEASE. , 2014, 10, P651-P651.		0
98	O1-08-06: TAU OLIGOMERS DERIVED FROM TRAUMATIC BRAIN INJURY CAUSE TOXICITY AND COGNITIVE IMPAIRMENT IN HTAU MICE. , 2014, 10, P146-P146.		0
99	P4-215: TAU OLIGOMER-SPECIFIC ANTIBODIES IN INTRAVENOUS IMMUNOGLOBULINS (IVIGS): POTENTIAL THERAPEUTIC SIGNIFICANCE IN ALZHEIMER'S DISEASE AND OTHER NEURODEGENERATIVE TAUOPATHIES. , 2014, 10, P866-P867.		0
100	P2-071: PATHOLOGICAL TAU SPECIES ABROGATE NASCENT PROTEIN PRODUCTION BY ASSOCIATING WITH THE RIBOSOMAL COMPLEX: IMPLICATIONS OF A NOVEL TAU FUNCTION AND ITS PATHOGENIC LINK TO MEMORY IMPAIRMENT. , 2014, 10, P495-P496.		0
101	O5-04-01: DIFFERENT OLIGOMERIC TAU STRAINS ARE DETECTED WITH NOVEL ANTI-TAU OLIGOMER-SPECIFIC ANTIBODIES. , 2014, 10, P297-P297.		0
102	Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons. Journal of Biological Chemistry, 2013, 288, 1856-1870.	1.6	436
103	Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochemical and Biophysical Research Communications, 2013, 430, 963-968.	1.0	75
104	Design of Metastable Î ² -Sheet Oligomers from Natively Unstructured Peptide. ACS Chemical Neuroscience, 2013, 4, 1520-1523.	1.7	15
105	Rapid Accumulation of Endogenous Tau Oligomers in a Rat Model of Traumatic Brain Injury. Journal of Biological Chemistry, 2013, 288, 17042-17050.	1.6	115
106	Formation and Propagation of Tau Oligomeric Seeds. Frontiers in Neurology, 2013, 4, 93.	1.1	95
107	Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. Journal of Clinical Investigation, 2013, 123, 4158-4169.	3.9	246
108	Tau aggregates as immunotherapeutic targets. Frontiers in Bioscience - Scholar, 2013, S5, 426-438.	0.8	31

#	Article	IF	CITATIONS
109	Alzheimer's disease imaging with a novel Tau targeted near infrared ratiometric probe. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 3, 102-17.	1.0	3
110	Identification of oligomers at early stages of tau aggregation in Alzheimer's disease. FASEB Journal, 2012, 26, 1946-1959.	0.2	420
111	Association of Skin with the Pathogenesis and Treatment of Neurodegenerative Amyloidosis. Frontiers in Neurology, 2012, 3, 5.	1.1	23
112	O4â€06â€01: Specific clearance of tau oligomers by passive immunization. Alzheimer's and Dementia, 2012, 8, P624.	0.4	0
113	Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific Reports, 2012, 2, 700.	1.6	396
114	Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. Molecular Neurodegeneration, 2012, 7, 37.	4.4	34
115	Molecular Mechanisms of Amyloid Oligomers Toxicity. Journal of Alzheimer's Disease, 2012, 33, S67-S78.	1.2	294
116	Differential Activation of the ER Stress Factor XBP1 by Oligomeric Assemblies. Neurochemical Research, 2012, 37, 1707-1717.	1.6	45
117	αâ€5ynuclein oligomers oppose longâ€ŧerm potentiation and impair memory through a calcineurinâ€dependent mechanism: relevance to human synucleopathic diseases. Journal of Neurochemistry, 2012, 120, 440-452.	2.1	94
118	Role of oligomers in the amyloidogenesis of primary cutaneous amyloidosis. Journal of the American Academy of Dermatology, 2011, 65, 1023-1031.	0.6	11
119	Amyloid-β Annular Protofibrils Evade Fibrillar Fate in Alzheimer Disease Brain. Journal of Biological Chemistry, 2011, 286, 22122-22130.	1.6	127
120	Tau Oligomers as Potential Drug Target for Alzheimer Disease (AD) Treatment. , 2011, , .		0
121	Alzheimers Disease: Review of Emerging Treatment Role for Intravenous Immunoglobulins. Journal of Central Nervous System Disease, 2011, 3, JCNSD.S5018.	0.7	9
122	Astrocytes contain amyloid-β annular protofibrils in Alzheimer's disease brains. FEBS Letters, 2011, 585, 3052-3057.	1.3	32
123	Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Molecular Neurodegeneration, 2011, 6, 39.	4.4	462
124	Amyloid-β Peptide and Oligomers in the Brain and Cerebrospinal Fluid of Aged Canines. Journal of Alzheimer's Disease, 2010, 20, 637-646.	1.2	69
125	Preparation and Characterization of Neurotoxic Tau Oligomers. Biochemistry, 2010, 49, 10039-10041.	1.2	302
126	Amyloidâ€Î² oligomers impair fear conditioned memory in a calcineurinâ€dependent fashion in mice. Journal of Neuroscience Research, 2010, 88, 2923-2932.	1.3	93

#	Article	IF	CITATIONS
127	Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar AÎ ² oligomers. Molecular Neurodegeneration, 2010, 5, 57.	4.4	135
128	Therapeutic removal of amyloid deposits in cutaneous amyloidosis by localised intraâ€lesional injections of antiâ€amyloid antibodies. Experimental Dermatology, 2010, 19, 904-911.	1.4	12
129	Following Activation of the Amyloid Cascade, Apolipoprotein E4 Drives the in vivo Oligomerization of Amyloid-1 ² Resulting in Neurodegeneration. Journal of Alzheimer's Disease, 2010, 22, 959-970.	1.2	22
130	Loss of α7 Nicotinic Receptors Enhances β-Amyloid Oligomer Accumulation, Exacerbating Early-Stage Cognitive Decline and Septohippocampal Pathology in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 2442-2453.	1.7	171
131	Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease. Hum Vaccin, 2010, 6, 931-935.	2.4	33
132	New vaccine development for chronic brain disease. Neuropsychopharmacology, 2010, 35, 354-354.	2.8	4
133	A fibril-specific, conformation-dependent antibody recognizes a subset of Aβ plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathologica, 2009, 118, 505-517.	3.9	41
134	Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Current Opinion in Immunology, 2009, 21, 359-363.	2.4	52
135	Poloxamer 188 Copolymer Membrane Sealant Rescues Toxicity of Amyloid Oligomers In Vitro. Journal of Molecular Biology, 2009, 391, 577-585.	2.0	31
136	Annular Protofibrils Are a Structurally and Functionally Distinct Type of Amyloid Oligomer. Journal of Biological Chemistry, 2009, 284, 4230-4237.	1.6	307
137	Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate. PLoS ONE, 2009, 4, e5562.	1.1	95
138	Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification. International Journal of Alzheimer's Disease, 2009, 2009, 1-7.	1.1	18
139	Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin. Molecular Neurodegeneration, 2008, 3, 16.	4.4	57
140	Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. Aging Cell, 2008, 7, 824-835.	3.0	87
141	CNI-1493 inhibits Aβ production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease. Journal of Experimental Medicine, 2008, 205, 1593-1599.	4.2	21
142	Exercise reverses preamyloid oligomer and prolongs survival in ÂB-crystallin-based desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5995-6000.	3.3	76
143	Toxic Human Islet Amyloid Polypeptide (h-IAPP) Oligomers Are Intracellular, and Vaccination to Induce Anti-Toxic Oligomer Antibodies Does Not Prevent h-IAPP-Induced Â-Cell Apoptosis in h-IAPP Transgenic Mice. Diabetes, 2007, 56, 1324-1332.	0.3	167
144	Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiology of Aging, 2007, 28, 1689-1699.	1.5	107

#	Article	IF	CITATIONS
145	Small Molecule Inhibitors of Aggregation Indicate That Amyloid β Oligomerization and Fibrillization Pathways Are Independent and Distinct. Journal of Biological Chemistry, 2007, 282, 10311-10324.	1.6	620
146	Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Molecular Neurodegeneration, 2007, 2, 18.	4.4	655
147	Pore-Forming Proteins Share Structural and Functional Homology with Amyloid Oligomers. NeuroMolecular Medicine, 2007, 9, 270-275.	1.8	78
148	Conformationâ€Dependent Antiâ€Amyloid Oligomer Antibodies. Methods in Enzymology, 2006, 413, 326-344.	0.4	146
149	Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.	1.5	322
150	A specific amyloid- \hat{l}^2 protein assembly in the brain impairs memory. Nature, 2006, 440, 352-357.	13.7	2,662
151	ERK1/2 Activation Mediates Al̂² Oligomer-induced Neurotoxicity via Caspase-3 Activation and Tau Cleavage in Rat Organotypic Hippocampal Slice Cultures. Journal of Biological Chemistry, 2006, 281, 20315-20325.	1.6	159
152	Soluble Amyloid Oligomers Increase Bilayer Conductance by Altering Dielectric Structure. Journal of General Physiology, 2006, 128, 637-647.	0.9	211
153	Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. Journal of Clinical Investigation, 2006, 116, 378-385.	3.9	179
154	Soluble AÎ ² oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer's disease brain. Brain Research, 2005, 1031, 222-228.	1.1	109
155	Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Research, 2005, 1045, 224-228.	1.1	18
156	Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13592-13597.	3.3	100
157	LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. Journal of Lipid Research, 2005, 46, 115-122.	2.0	41
158	Curcumin Inhibits Formation of Amyloid β Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. Journal of Biological Chemistry, 2005, 280, 5892-5901.	1.6	2,024
159	Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers*♦. Journal of Biological Chemistry, 2005, 280, 17294-17300.	1.6	886
160	β-Amyloid (Aβ) causes detachment of N1E-115 neuroblastoma cells by acting as a scaffold for cell-associated plasminogen activation. Molecular and Cellular Neurosciences, 2005, 28, 496-508.	1.0	7
161	Desmin-related cardiomyopathy in transgenic mice: A cardiac amyloidosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10132-10136.	3.3	262
162	Permeabilization of Lipid Bilayers Is a Common Conformation-dependent Activity of Soluble Amyloid Oligomers in Protein Misfolding Diseases. Journal of Biological Chemistry, 2004, 279, 46363-46366.	1.6	798

#	Article	IF	CITATIONS
163	Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science, 2003, 300, 486-489.	6.0	3,748
164	Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles. Neuron, 2003, 39, 409-421.	3.8	3,609
165	Structural and Dynamic Features of Alzheimer's Aβ Peptide in Amyloid Fibrils Studied by Site-directed Spin Labeling. Journal of Biological Chemistry, 2002, 277, 40810-40815.	1.6	361
166	The Influence of the Carboxyl Terminus of the Alzheimer Aβ Peptide on its Conformation, Aggregation, and Neurotoxic Properties. NeuroMolecular Medicine, 2002, 1, 81-94.	1.8	19
167	Isolation, Structural, and Functional Characterization of an Apoptosis-Inducing -Amino Acid Oxidase from Leaf-Nosed Viper (Eristocophis macmahoni) Snake Venom. Archives of Biochemistry and Biophysics, 2000, 384, 216-226.	1.4	94
168	Rational design, conformational studies and bioactivity of highly potent conformationally constrained calcitonin analogues. FEBS Journal, 1999, 265, 606-618.	0.2	26
169	Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in Vitro. Journal of Molecular Biology, 1999, 287, 781-796.	2.0	340
170	Tau Oligomer Induced HMGB1 Release Contributes to Cellular Senescence and Neuropathology Linked to Alzheimer's Disease and Frontotemporal Dementia. SSRN Electronic Journal, 0, , .	0.4	0
171	A Complex Containing HNRNPA2B1 and N ⁶ -Methyladenosine Modified Transcripts Mediates Actions of Toxic Tau Oligomers. SSRN Electronic Journal, 0, , .	0.4	0