
Vincent Cavailles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Pharmacology. LXIV. Estrogen Receptors. Pharmacological Reviews, 2006, 58, 773-781.	16.0	492
2	Interaction of proteins with transcriptionally active estrogen receptors Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10009-10013.	7.1	342
3	Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14930-14935.	7.1	313
4	Estrogen-induced lysosomal proteases secreted by breast cancer cells: A role in carcinogenesis?. Journal of Cellular Biochemistry, 1987, 35, 17-29.	2.6	184
5	Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochemical Pharmacology, 2006, 71, 1459-1469.	4.4	171
6	Regulation of Cathepsin-D and pS2 Gene Expression by Growth Factors in MCF7 Human Breast Cancer Cells. Molecular Endocrinology, 1989, 3, 552-558.	3.7	165
7	Identification of New Human Pregnane X Receptor Ligands among Pesticides Using a Stable Reporter Cell System. Toxicological Sciences, 2006, 91, 501-509.	3.1	162
8	Transcriptional Activators Differ in Their Responses to Overexpression of TATA-Box-Binding Protein. Molecular and Cellular Biology, 1995, 15, 1554-1563.	2.3	154
9	Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 203-207.	7.1	144
10	Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 33695-33706.	8.0	135
11	RIP-140 Interacts with Multiple Nuclear Receptors by Means of Two Distinct Sites. Molecular and Cellular Biology, 1996, 16, 6029-6036.	2.3	130
12	Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays. Toxicology and Applied Pharmacology, 2008, 232, 384-395.	2.8	127
13	Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nature Communications, 2015, 6, 8089.	12.8	125
14	Estrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells. Nucleic Acids Research, 1988, 16, 1903-1919.	14.5	121
15	A natural transactivation mutation in the thyroid hormone receptor: Impaired interaction with putative transcriptional mediators. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 248-253.	7.1	112
16	Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials Science and Engineering C, 2020, 110, 110595.	7.3	103
17	Receptor-Interacting Protein 140 Differentially Regulates Estrogen Receptor-Related Receptor Transactivation Depending on Target Genes. Molecular Endocrinology, 2006, 20, 1035-1047.	3.7	98
18	ldentification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9346-E9355.	7.1	96

#	Article	IF	CITATIONS
19	The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene, 2005, 24, 8167-8175.	5.9	95
20	Specific Activity of Class II Histone Deacetylases in Human Breast Cancer Cells. Molecular Cancer Research, 2008, 6, 1908-1919.	3.4	95
21	Transcriptional Regulation by the Repressor of Estrogen Receptor Activity via Recruitment of Histone Deacetylases. Journal of Biological Chemistry, 2004, 279, 24834-24843.	3.4	92
22	Differential Regulation of Estrogen Receptor α Turnover and Transactivation by Mdm2 and Stress-Inducing Agents. Cancer Research, 2007, 67, 5513-5521.	0.9	92
23	Differential Interaction of Nuclear Receptors with the Putative Human Transcriptional Coactivator hTIF1. Journal of Biological Chemistry, 1997, 272, 12062-12068.	3.4	91
24	Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111525.	7.3	90
25	Cloning and Sequencing of the 52K Cathepsin D Complementary Deoxyribonucleic Acid of MCF7 Breast Cancer Cells and Mapping on Chromosome 11. Molecular Endocrinology, 1988, 2, 186-192.	3.7	89
26	Estrogens and antiestrogens activate hPXR. Toxicology Letters, 2007, 170, 19-29.	0.8	88
27	Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Molecular and Cellular Endocrinology, 1999, 156, 85-93.	3.2	87
28	Ligands Differentially Modulate the Protein Interactions of the Human Estrogen Receptors $\hat{l}\pm$ and $\hat{l}^2.$ Journal of Molecular Biology, 2003, 326, 77-92.	4.2	83
29	Transcriptional Activities of the Orphan Nuclear Receptor ERRÂ (Estrogen Receptor-Related Receptor-Â). Molecular Endocrinology, 1999, 13, 764-773.	3.7	74
30	Prognostic Significance of TRIM24/TIF-1α Gene Expression in Breast Cancer. American Journal of Pathology, 2011, 178, 1461-1469.	3.8	73
31	Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors. Environmental Health Perspectives, 2014, 122, 1306-1313.	6.0	72
32	Overexpression and hormonal regulation of pro-cathepsin D in mammary and endometrial cancer. The Journal of Steroid Biochemistry, 1989, 34, 177-182.	1.1	71
33	The human estrogen receptor α dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure11Edited by K. Yamamoto. Journal of Molecular Biology, 2001, 306, 433-442.	4.2	70
34	Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition. Nucleic Acids Research, 2004, 32, 1957-1966.	14.5	67
35	ERα and ERβ expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene, 2006, 25, 1799-1806.	5.9	66
36	Characterization of the proximal estrogen-responsive element of human cathepsin D gene. Molecular Endocrinology, 1994, 8, 693-703.	3.7	60

#	Article	IF	CITATIONS
37	Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. Journal of Endocrinology, 2003, 179, 41-53.	2.6	60
38	Structure, function, regulation and clinical significance of the 52K pro-cathepsin D secreted by breast cancer cells. Biochimie, 1988, 70, 943-949.	2.6	56
39	Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochemical Pharmacology, 2004, 68, 1239-1246.	4.4	56
40	The Transcriptional Coregulator RIP140 Represses E2F1 Activity and Discriminates Breast Cancer Subtypes. Clinical Cancer Research, 2010, 16, 2959-2970.	7.0	52
41	Occurrence of androgens in sewage treatment plants influents is associated with antagonist activities on other steroid receptors. Water Research, 2012, 46, 1912-1922.	11.3	51
42	SHP Represses Transcriptional Activity via Recruitment of Histone Deacetylases. Biochemistry, 2005, 44, 6312-6320.	2.5	49
43	The nuclear receptor transcriptional coregulator RIP140. Nuclear Receptor Signaling, 2006, 4, nrs.04024.	1.0	49
44	Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget, 2016, 7, 19693-19708.	1.8	49
45	Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. Journal of Materials Chemistry B, 2016, 4, 1134-1141.	5.8	49
46	Transcriptional Regulation of the Human NRIP1/RIP140 Gene by Estrogen Is Modulated by Dioxin Signalling. Molecular Pharmacology, 2006, 69, 1338-1346.	2.3	48
47	Negative regulation of hormone signaling by RIP140. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 51-59.	2.5	46
48	Differential regulation of cathepsin D by sex steroids in mammary cancer and uterine cells. Molecular and Cellular Endocrinology, 1989, 66, 231-238.	3.2	45
49	Tamoxifen Resistance and Epigenetic Modifications in Breast Cancer Cell Lines. Current Medicinal Chemistry, 2007, 14, 3035-3043.	2.4	45
50	Metastatic colorectal cancer cells maintain the TGFÎ ² program and use TGFBI to fuel angiogenesis. Theranostics, 2021, 11, 1626-1640.	10.0	45
51	RIP140 increases APC expression and controls intestinal homeostasis and tumorigenesis. Journal of Clinical Investigation, 2014, 124, 1899-1913.	8.2	45
52	The Nuclear Receptor Coactivator PGC-1α Exhibits Modes of Interaction with the Estrogen Receptor Distinct From those of SRC-1. Journal of Molecular Biology, 2005, 347, 921-934.	4.2	43
53	Cathepsin D gene of human MCF7 cells contains estrogen-responsive sequences in its 5′ proximal flanking region. Biochemical and Biophysical Research Communications, 1991, 174, 816-824.	2.1	42
54	Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 1865-1874.	4.6	42

#	Article	IF	CITATIONS
55	Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends in Endocrinology and Metabolism, 2010, 21, 181-189.	7.1	41
56	Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. Journal of Molecular Endocrinology, 2004, 32, 583-594.	2.5	40
57	Receptor-Interacting Protein 140 Is a Repressor of the Androgen Receptor Activity. Molecular Endocrinology, 2006, 20, 1506-1518.	3.7	40
58	A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling. Journal of the American Society of Nephrology: JASN, 2017, 28, 2364-2376.	6.1	40
59	Immunohistochemical distribution of the 52-kDa protein in mammary tumors: A marker associated with cell proliferation rather than with hormone responsiveness. The Journal of Steroid Biochemistry, 1987, 27, 439-445.	1.1	38
60	Negative Regulation of Estrogen Signaling by ERÎ ² and RIP140 in Ovarian Cancer Cells. Molecular Endocrinology, 2013, 27, 1429-1441.	3.7	38
61	Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicology and Applied Pharmacology, 2014, 280, 60-69.	2.8	38
62	Semiquantitative reverse transcription-polymerase chain reaction to evaluate the expression patterns of genes involved in the oestrogen pathway. Journal of Molecular Endocrinology, 2000, 24, 433-440.	2.5	37
63	Receptor-Interacting Protein 140 Binds c-Jun and Inhibits Estradiol-Induced Activator Protein-1 Activity by Reversing Glucocorticoid Receptor-Interacting Protein 1 Effect. Molecular Endocrinology, 2003, 17, 287-299.	3.7	37
64	Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants. Science of the Total Environment, 2010, 408, 2608-2615.	8.0	36
65	Estrogen Receptor Interactions and Dynamics Monitored in Live Cells by Fluorescence Cross-Correlation Spectroscopy. Biochemistry, 2010, 49, 772-781.	2.5	36
66	Cognitive impairments in adult mice with constitutive inactivation of <i>RIP140</i> gene expression. Genes, Brain and Behavior, 2012, 11, 69-78.	2.2	36
67	Increased expression of the <scp>HDAC</scp> 9 gene is associated with antiestrogen resistance of breast cancers. Molecular Oncology, 2019, 13, 1534-1547.	4.6	36
68	Biological Analysis of Endocrine-Disrupting Compounds in Tunisian Sewage Treatment Plants. Archives of Environmental Contamination and Toxicology, 2010, 59, 1-12.	4.1	34
69	Efficient new constructs against triple negative breast cancer cells: synthesis and preliminary biological study of ferrocifen–SAHA hybrids and related species. Dalton Transactions, 2013, 42, 15489.	3.3	34
70	Hormonal regulation of cathepsin D following transfection of the estrogen or progesterone receptor into three sex steroid hormone resistant cancer cell lines. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 231-237.	2.5	30
71	Dimerization is required for transactivation by estrogen-receptor-related (ERR) orphan receptors: evidence from amphioxus ERR. Journal of Molecular Endocrinology, 2004, 33, 493-509.	2.5	28
72	Manipulating Protein Acetylation in Breast Cancer: A Promising Approach in Combination with Hormonal Therapies?. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	28

#	Article	IF	CITATIONS
73	The steroid receptor RNA activator protein is recruited to promoter regions and acts as a transcriptional repressor. FEBS Letters, 2010, 584, 2218-2224.	2.8	27
74	Complex regulation of LCoR signaling in breast cancer cells. Oncogene, 2017, 36, 4790-4801.	5.9	27
75	The RIP140 Gene Is a Transcriptional Target of E2F1. PLoS ONE, 2012, 7, e35839.	2.5	26
76	Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Advances, 2016, 6, 109150-109156.	3.6	26
77	Transcriptional Repression of Estrogen Receptor α Signaling by SENP2 in Breast Cancer Cells. Molecular Endocrinology, 2014, 28, 183-196.	3.7	25
78	The Prognostic Impact of the Aryl Hydrocarbon Receptor (AhR) in Primary Breast Cancer Depends on the Lymph Node Status. International Journal of Molecular Sciences, 2019, 20, 1016.	4.1	24
79	Comparative activity of pulsed or continuous estradiol exposure on gene expression and proliferation of normal and tumoral human breast cells. Journal of Molecular Endocrinology, 2002, 28, 165-175.	2.5	23
80	Regulation of activities of steroid hormone receptors by tibolone and its primary metabolites. Journal of Steroid Biochemistry and Molecular Biology, 2009, 116, 8-14.	2.5	23
81	A new mechanism of SOX9 action to regulate PKCα expression in the intestine epithelium. Journal of Cell Science, 2009, 122, 2191-2196.	2.0	19
82	Cytoplasmic PPARÎ ³ is a marker of poor prognosis in patients with Cox-1 negative primary breast cancers. Journal of Translational Medicine, 2020, 18, 94.	4.4	19
83	Research Resource: STR DNA Profile and Gene Expression Comparisons of Human BG-1 Cells and a BG-1/MCF-7 Clonal Variant. Molecular Endocrinology, 2014, 28, 2072-2081.	3.7	17
84	The emerging role of the transcriptional coregulator RIP140 in solid tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 144-150.	7.4	17
85	Expression and role of RIP140/NRIP1 in chronic lymphocytic leukemia. Journal of Hematology and Oncology, 2015, 8, 20.	17.0	17
86	Sacrificial mold-assisted 3D printing of stable biocompatible gelatin scaffolds. Bioprinting, 2021, 22, e00140.	5.8	17
87	Expression and role of nuclear receptor coregulators in colorectal cancer. World Journal of Gastroenterology, 2017, 23, 4480.	3.3	16
88	Estradiol increases the secretion by MCF7 cells of several lysosomal pro-enzymes. Biochemical and Biophysical Research Communications, 1990, 171, 972-978.	2.1	14
89	Effect of Ligand and DNA Binding on the Interaction between Human Transcription Intermediary Factor 1Â and Estrogen Receptors. Molecular Endocrinology, 1999, 13, 2137-2150.	3.7	14
90	Importance of RIP140 and LCoR Sub-Cellular Localization for Their Association With Breast Cancer Aggressiveness and Patient Survival. Translational Oncology, 2018, 11, 1090-1096.	3.7	13

#	Article	IF	CITATIONS
91	Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Frontiers in Oncology, 2020, 10, 712.	2.8	13
92	Cytoplasmic and Nuclear Forms of Thyroid Hormone Receptor Î ² 1 Are Inversely Associated with Survival in Primary Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 330.	4.1	13
93	Involvement of HP11 \pm protein in irreversible transcriptional inactivation by antiestrogens in breast cancer cells. FEBS Letters, 2005, 579, 4278-4286.	2.8	12
94	The estrogen-regulated 52K-cathepsin-D in breast cancer: From biology to clinical applications. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1987, 14, 377-384.	0.3	11
95	Investigation of RIP140 and LCoR as independent markers for poor prognosis in cervical cancer. Oncotarget, 2017, 8, 105356-105371.	1.8	10
96	RIP140 inhibits glycolysis-dependent proliferation of breast cancer cells by regulating GLUT3 expression through transcriptional crosstalk between hypoxia induced factor and p53. Cellular and Molecular Life Sciences, 2022, 79, 270.	5.4	10
97	Insensitivity of Cathepsin D Gene to Estradiol in Endometrial Cells Is Determined by the Sequence of Its Estrogen Responsive Element. Biochemical and Biophysical Research Communications, 1994, 203, 711-718.	2.1	9
98	Long-term treatment with the pure anti-estrogen fulvestrant durably remodels estrogen signaling in BC-1 ovarian cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 176-185.	2.5	8
99	Prognostic relevance of RIP140 and ERβ expression in unifocal versus multifocal breast cancers: a preliminary report. International Journal of Molecular Sciences, 2019, 20, 418.	4.1	8
100	Cytoplasmic LXR expression is an independent marker of poor prognosis for patients with early stage primary breast cancer. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2535-2544.	2.5	8
101	Cytoplasmic Localization of RXRα Determines Outcome in Breast Cancer. Cancers, 2021, 13, 3756.	3.7	7
102	RIP140 and LCoR expression in gastrointestinal cancers. Oncotarget, 2017, 8, 111161-111175.	1.8	7
103	Affinity purification using recombinant PXR as a tool to characterize environmental ligands. Environmental Toxicology, 2014, 29, 207-215.	4.0	6
104	Effect of tamoxifen and fulvestrant long-term treatments on ROS production and (pro/anti)-oxidant enzymes mRNA levels in a MCF-7-derived breast cancer cell line. Breast Cancer, 2016, 23, 692-700.	2.9	6
105	Biochemical characterization and novel isolation of pure estrogen receptor hormone-binding domain. Journal of Steroid Biochemistry and Molecular Biology, 1996, 58, 467-477.	2.5	5
106	An R package for generic modular response analysis and its application to estrogen and retinoic acid receptor crosstalk. Scientific Reports, 2021, 11, 7272.	3.3	5
107	A Truncated NRIP1 Mutant Amplifies Microsatellite Instability of Colorectal Cancer by Regulating MSH2/MSH6 Expression, and Is a Prognostic Marker of Stage III Tumors. Cancers, 2021, 13, 4449.	3.7	5
108	Adsorption of proteins on TiO2 particles influences their aggregation and cell penetration. Food Chemistry, 2021, 360, 130003.	8.2	5

#	Article	IF	CITATIONS
109	The 52K cathepsin-D of breast cancer: structure, regulation, function and clinical value. Cancer Treatment and Research, 1988, 40, 207-221.	0.5	5
110	RIP140 Represses Intestinal Paneth Cell Differentiation and Interplays with SOX9 Signaling in Colorectal Cancer. Cancers, 2021, 13, 3192.	3.7	4
111	Cytoplasmic Colocalization of RXRα and PPARγ as an Independent Negative Prognosticator for Breast Cancer Patients. Cells, 2022, 11, 1244.	4.1	4
112	Regulation of intestinal homeostasis and tumorigenesis by the transcriptional coregulator RIP140. Molecular and Cellular Oncology, 2014, 1, e960761.	0.7	3
113	Regulation of Hormone Signaling by Nuclear Receptor Interacting Proteins. Advances in Experimental Medicine and Biology, 2008, 617, 121-127.	1.6	3
114	The Transcription Coregulator RIP140 Inhibits Cancer Cell Proliferation by Targeting the Pentose Phosphate Pathway. International Journal of Molecular Sciences, 2022, 23, 7419.	4.1	3
115	Oestrogen-induced pro-cathepsin D in breast cancer: from biology to clinical applications. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1989, 95, 107-118.	0.2	2
116	Mapping on the calf estrogen receptor of the binding domain for an antibody interfering with receptor activation. The Journal of Steroid Biochemistry, 1989, 32, 769-780.	1.1	2
117	A hormone-regulated pro-cathepsin D secreted by human mammary cancer cells. Biochemical Society Transactions, 1989, 17, 31-33.	3.4	2
118	New stably transfected bioluminescent cells expressing FLAG epitope-tagged estrogen receptors to study their chromatin recruitment. BMC Biotechnology, 2009, 9, 77.	3.3	2
119	Estrogen Induced Cathepsin D in Breast Cancer: From Biology to Clinical Applications. , 1989, , 171-186.		2
120	A la recherche des modulateurs de l'activité transcriptionnelle des récepteurs nucléaires. Medecine/Sciences, 1996, 12, 229.	0.2	2
121	RIP140 regulates POLK gene expression and the response to alkylating drugs in colon cancer cells. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 401-415.	2.1	2
122	Dialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads. Advances in Bioscience and Biotechnology (Print), 2013, 04, 45-54.	0.7	1
123	N-CoR et SMRT sont des corépresseurs transcriptionnels des récepteurs des hormones thyroÃ⁻diennes et de l'acide rétinoÃ⁻que Medecine/Sciences, 1996, 12, 234.	0.2	1
124	Abstract 4970: Complex regulation of RIP140 gene expression by E2F transcription factors. , 2010, , .		0
125	Abstract 1056: Deregulated HDAC9 expression in breast cancer is associated with basal molecular subtype. , 2012, , .		0
126	Abstract 4704: Effects of the HDAC inhibitor S78454/PCI-24781 on ER signalling in ERα-positive antiestrogen-sensitive and -resistant breast cancer cells. , 2012, , .		0

#	Article	IF	CITATIONS
127	An Estrogen Induced Protease in Breast Cancer: From Basic Research to Clinical Applications. , 1988, , 221-232.		0
128	Estrogen-induced Pro-cathepsin D and its Relationship to Breast Cancer Invasion and Metastasis. , 1990, , 100-110.		0
129	LxxLL : une signature des coactivateurs de récepteurs hormonaux nucléaires. Medecine/Sciences, 1997, 13, 1212.	0.2	0
130	Réglage fin de la transcription par les co-facteurs des récepteurs hormonaux nucléaires Medecine/Sciences, 1998, 14, 1127.	0.2	0
131	Les histone désacétylases : de nouvelles cibles en chimiothérapie ?. Medecine/Sciences, 1999, 15, 1318.	0.2	0