
## Sergio Pirozzoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822392/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Physics of Fluids, 2004, 16, 530-545.               | 1.6  | 404       |
| 2  | Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction. Journal of Computational Physics, 2002, 178, 81-117.                                     | 1.9  | 376       |
| 3  | Numerical Methods for High-Speed Flows. Annual Review of Fluid Mechanics, 2011, 43, 163-194.                                                                        | 10.8 | 339       |
| 4  | Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25.<br>Physics of Fluids, 2006, 18, 065113.                         | 1.6  | 273       |
| 5  | Turbulence in supersonic boundary layers at moderate Reynolds number. Journal of Fluid Mechanics, 2011, 688, 120-168.                                               | 1.4  | 255       |
| 6  | Generalized conservative approximations of split convective derivative operators. Journal of Computational Physics, 2010, 229, 7180-7190.                           | 1.9  | 227       |
| 7  | On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219, 489-497.                                                        | 1.9  | 192       |
| 8  | Velocity statistics in turbulent channel flow up to. Journal of Fluid Mechanics, 2014, 742, 171-191.                                                                | 1.4  | 189       |
| 9  | Characterization of coherent vortical structures in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2008, 613, 205-231.                          | 1.4  | 138       |
| 10 | Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2010, 657, 361-393. | 1.4  | 132       |
| 11 | Reynolds and Mach number effects in compressible turbulent channel flow. International Journal of<br>Heat and Fluid Flow, 2016, 59, 33-49.                          | 1.1  | 132       |
| 12 | Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures. Physics of Fluids, 2004, 16, 4386-4407. | 1.6  | 123       |
| 13 | Passive scalars in turbulent channel flow at high Reynolds number. Journal of Fluid Mechanics, 2016,<br>788, 614-639.                                               | 1.4  | 115       |
| 14 | Wall pressure fluctuations beneath supersonic turbulent boundary layers. Physics of Fluids, 2011, 23, .                                                             | 1.6  | 108       |
| 15 | Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism. Physics of Fluids, 2011, 23, .   | 1.6  | 105       |
| 16 | Turbulence and secondary motions in square duct flow. Journal of Fluid Mechanics, 2018, 840, 631-655.                                                               | 1.4  | 104       |
| 17 | Direct Numerical Simulation Database for Impinging Shock Wave/Turbulent Boundary-Layer<br>Interaction. AIAA Journal, 2011, 49, 1307-1312.                           | 1.5  | 101       |
| 18 | Turbulence statistics in Couette flow at high Reynolds number. Journal of Fluid Mechanics, 2014, 758, 327-343                                                       | 1.4  | 91        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Shock-Wave-Vortex Interactions: Shock and Vortex Deformations, and Sound Production. Theoretical and Computational Fluid Dynamics, 2000, 13, 421-456.            | 0.9 | 89        |
| 20 | Probing high-Reynolds-number effects in numerical boundary layers. Physics of Fluids, 2013, 25, .                                                                | 1.6 | 87        |
| 21 | Stability and modal analysis of shock/boundary layer interactions. Theoretical and Computational Fluid Dynamics, 2017, 31, 33-50.                                | 0.9 | 86        |
| 22 | Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates.<br>Journal of Computational Physics, 2011, 230, 2997-3014.  | 1.9 | 76        |
| 23 | Numerically stable formulations of convective terms for turbulent compressible flows. Journal of Computational Physics, 2019, 382, 86-104.                       | 1.9 | 66        |
| 24 | Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions.<br>Physical Review Fluids, 2016, 1, .                            | 1.0 | 65        |
| 25 | STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Computer Physics Communications, 2021, 263, 107906. | 3.0 | 63        |
| 26 | Mixed convection in turbulent channels with unstable stratification. Journal of Fluid Mechanics, 2017, 821, 482-516.                                             | 1.4 | 62        |
| 27 | On the estimation of wall pressure coherence using time-resolved tomographic PIV. Experiments in Fluids, 2013, 54, 1.                                            | 1.1 | 60        |
| 28 | One-point statistics for turbulent pipe flow up to. Journal of Fluid Mechanics, 2021, 926, .                                                                     | 1.4 | 60        |
| 29 | Poiseuille and Couette flows in the transitional and fully turbulent regime. Journal of Fluid<br>Mechanics, 2015, 770, 424-441.                                  | 1.4 | 52        |
| 30 | Genuine compressibility effects in wall-bounded turbulence. Physical Review Fluids, 2019, 4, .                                                                   | 1.0 | 52        |
| 31 | The wall pressure signature of transonic shock/boundary layer interaction. Journal of Fluid Mechanics, 2011, 671, 288-312.                                       | 1.4 | 50        |
| 32 | Compressibility effects on roughness-induced boundary layer transition. International Journal of<br>Heat and Fluid Flow, 2012, 35, 45-51.                        | 1.1 | 50        |
| 33 | Large-scale motions and inner/outer layer interactions in turbulent Couette–Poiseuille flows.<br>Journal of Fluid Mechanics, 2011, 680, 534-563.                 | 1.4 | 46        |
| 34 | Data-driven compressibility transformation for turbulent wall layers. Physical Review Fluids, 2020, 5, .                                                         | 1.0 | 45        |
| 35 | On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows. Computers and Fluids, 2016, 130, 84-93. | 1.3 | 41        |
| 36 | On the role of secondary motions in turbulent square duct flow. Journal of Fluid Mechanics, 2018, 847, .                                                         | 1.4 | 40        |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A low-dissipative solver for turbulent compressible flows on unstructured meshes, with OpenFOAM implementation. Computers and Fluids, 2017, 152, 14-23.             | 1.3 | 39        |
| 38 | An aerothermodynamic design optimization framework for hypersonic vehicles. Aerospace Science and Technology, 2019, 84, 339-347.                                    | 2.5 | 39        |
| 39 | Development of optimized weighted-ENO schemes for multiscale compressible flows. International<br>Journal for Numerical Methods in Fluids, 2003, 42, 953-977.       | 0.9 | 38        |
| 40 | Wall pressure coherence in supersonic turbulent boundary layers. Journal of Fluid Mechanics, 2013, 732, 445-456.                                                    | 1.4 | 38        |
| 41 | A general strategy for the optimization of Runge–Kutta schemes for wave propagation phenomena.<br>Journal of Computational Physics, 2009, 228, 4182-4199.           | 1.9 | 37        |
| 42 | On the dynamical relevance of coherent vortical structures in turbulent boundary layers. Journal of<br>Fluid Mechanics, 2010, 648, 325-349.                         | 1.4 | 37        |
| 43 | Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 2013, 248, 109-126.         | 1.9 | 37        |
| 44 | Parameterization of Boundary-Layer Transition Induced by Isolated Roughness Elements. AIAA Journal, 2014, 52, 2261-2269.                                            | 1.5 | 37        |
| 45 | Turbulent channel flow simulations in convecting reference frames. Journal of Computational Physics, 2013, 232, 1-6.                                                | 1.9 | 36        |
| 46 | Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers. Physics of Fluids, 2019, 31, .                                         | 1.6 | 35        |
| 47 | Direct numerical simulation of supersonic pipe flow at moderate Reynolds number. International<br>Journal of Heat and Fluid Flow, 2019, 76, 100-112.                | 1.1 | 34        |
| 48 | Revisiting the mixing-length hypothesis in the outer part of turbulent wall layers: mean flow and wall<br>friction. Journal of Fluid Mechanics, 2014, 745, 378-397. | 1.4 | 31        |
| 49 | Direct numerical simulation of conical shock wave–turbulent boundary layer interaction. Journal of<br>Fluid Mechanics, 2019, 877, 167-195.                          | 1.4 | 30        |
| 50 | Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Physical<br>Review Fluids, 2020, 5, .                                      | 1.0 | 30        |
| 51 | On shock sensors for hybrid compact/WENO schemes. Computers and Fluids, 2020, 199, 104439.                                                                          | 1.3 | 29        |
| 52 | Reynolds stress scaling in the near-wall region of wall-bounded flows. Journal of Fluid Mechanics, 2021, 926, .                                                     | 1.4 | 29        |
| 53 | Performance analysis and optimization of finite-difference schemes for wave propagation problems.<br>Journal of Computational Physics, 2007, 222, 809-831.          | 1.9 | 28        |
| 54 | A general framework for the evaluation of shock-capturing schemes. Journal of Computational Physics, 2019, 376, 924-936.                                            | 1.9 | 27        |

4

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows.<br>International Journal of Multiphase Flow, 2013, 51, 55-64.                      | 1.6 | 25        |
| 56 | Vortex events in Euler and Navier–Stokes simulations with smooth initial conditions. Journal of Fluid<br>Mechanics, 2012, 690, 288-320.                                         | 1.4 | 21        |
| 57 | Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves, 2009, 19, 487-497.                             | 1.0 | 20        |
| 58 | On the size of the energy-containing eddies in the outer turbulent wall layer. Journal of Fluid<br>Mechanics, 2012, 702, 521-532.                                               | 1.4 | 20        |
| 59 | Early evolution of the compressible mixing layer issued from two turbulent streams. Journal of Fluid<br>Mechanics, 2015, 777, 196-218.                                          | 1.4 | 20        |
| 60 | Scaling of velocity fluctuations in statistically unstable boundary-layer flows. Journal of Fluid<br>Mechanics, 2020, 886, .                                                    | 1.4 | 20        |
| 61 | Optimal transient growth in compressible turbulent boundary layers. Journal of Fluid Mechanics, 2015, 770, 124-155.                                                             | 1.4 | 19        |
| 62 | Towards the ultimate regime in Rayleigh–Darcy convection. Journal of Fluid Mechanics, 2021, 911, .                                                                              | 1.4 | 18        |
| 63 | Natural grid stretching for DNS of wall-bounded flows. Journal of Computational Physics, 2021, 439, 110408.                                                                     | 1.9 | 18        |
| 64 | Direct numerical simulation of developed compressible flow in square ducts. International Journal of Heat and Fluid Flow, 2019, 76, 130-140.                                    | 1.1 | 17        |
| 65 | Vortex shedding in a two-dimensional diffuser: theory and simulation of separation control by periodic mass injection. Journal of Fluid Mechanics, 2004, 520, 187-213.          | 1.4 | 16        |
| 66 | Mean equation based scaling analysis of fully-developed turbulent channel flow with uniform heat generation. International Journal of Heat and Mass Transfer, 2017, 115, 50-61. | 2.5 | 15        |
| 67 | An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds.<br>Journal of Scientific Computing, 2018, 75, 308-331.                   | 1.1 | 15        |
| 68 | Reynolds-Averaged Numerical Simulations of Conical Shock-Wave/Boundary-Layer Interactions. AIAA<br>Journal, 2021, 59, 1645-1659.                                                | 1.5 | 15        |
| 69 | On algebraic TVD-VOF methods for tracking material interfaces. Computers and Fluids, 2019, 189, 73-81.                                                                          | 1.3 | 14        |
| 70 | The fluid dynamics of rolling wheels at low Reynolds number. Journal of Fluid Mechanics, 2012, 706,<br>496-533.                                                                 | 1.4 | 13        |
| 71 | A minimal flow unit for the study of turbulence with passive scalars. Journal of Turbulence, 2014, 15, 731-751.                                                                 | 0.5 | 13        |
| 72 | DNS of passive scalars in turbulent pipe flow. Journal of Fluid Mechanics, 2022, 940, .                                                                                         | 1.4 | 13        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Direct Numerical Simulation and Theory of a Wall-Bounded Flow with Zero Skin Friction. Flow,<br>Turbulence and Combustion, 2017, 99, 553-564.                                                        | 1.4 | 12        |
| 74 | Scrutiny of buffet mechanisms in transonic flow. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1031-1046.                                                            | 1.6 | 12        |
| 75 | Crossflow effects on shock wave/turbulent boundary layer interactions. Theoretical and Computational Fluid Dynamics, 2022, 36, 327-344.                                                              | 0.9 | 12        |
| 76 | Drag reduction on a transonic airfoil. Journal of Fluid Mechanics, 2022, 942, .                                                                                                                      | 1.4 | 12        |
| 77 | Conjugate heat transfer analysis of rectangular cooling channels using modeled and direct<br>numerical simulation of turbulence. International Journal of Heat and Mass Transfer, 2021, 181, 121849. | 2.5 | 11        |
| 78 | Large-Eddy Simulations of Idealized Shock/Boundary-Layer Interactions with Crossflow. AIAA Journal, 2022, 60, 2767-2779.                                                                             | 1.5 | 10        |
| 79 | Special issue on the fluid mechanics of hypersonic flight. Theoretical and Computational Fluid Dynamics, 2022, 36, 1-8.                                                                              | 0.9 | 10        |
| 80 | Vorticity dynamics in turbulence growth. Theoretical and Computational Fluid Dynamics, 2010, 24, 247-251.                                                                                            | 0.9 | 9         |
| 81 | On turbulent friction in straight ducts with complex cross-section: the wall law and the hydraulic diameter. Journal of Fluid Mechanics, 2018, 846, .                                                | 1.4 | 9         |
| 82 | Effects of Wall Temperature on Hypersonic Impinging Shock-Wave/Turbulent-Boundary-Layer<br>Interactions. AIAA Journal, 2022, 60, 5109-5122.                                                          | 1.5 | 9         |
| 83 | DNS of Turbulent Flows in Ducts with Complex Shape. Flow, Turbulence and Combustion, 2018, 100, 1063-1079.                                                                                           | 1.4 | 8         |
| 84 | Direct numerical simulation of forced thermal convection in square ducts up to. Journal of Fluid<br>Mechanics, 2022, 941, .                                                                          | 1.4 | 8         |
| 85 | Transitional and turbulent flows in rectangular ducts: budgets and projection in principal mean strain axes. Journal of Turbulence, 2020, 21, 286-310.                                               | 0.5 | 7         |
| 86 | Turbulent flows in square ducts: physical insight and suggestions for turbulence modellers. Journal of Turbulence, 2020, 21, 106-128.                                                                | 0.5 | 7         |
| 87 | Influence of corner angle in streamwise supersonic corner flow. Physics of Fluids, 2021, 33, 056108.                                                                                                 | 1.6 | 7         |
| 88 | Secondary Flow in Smooth and Rough Turbulent Circular Pipes: Turbulence Kinetic Energy Budgets.<br>Fluids, 2021, 6, 448.                                                                             | 0.8 | 6         |
| 89 | On the velocity and dissipation signature of vortex tubes in isotropic turbulence. Physica D:<br>Nonlinear Phenomena, 2012, 241, 202-207.                                                            | 1.3 | 5         |
| 90 | On the relationship between drag and vertical velocity fluctuations in flow over riblets and liquid<br>infused surfaces. International Journal of Heat and Fluid Flow, 2020, 86, 108663.             | 1.1 | 5         |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | HTR-1.2 solver: Hypersonic Task-based Research solver version 1.2. Computer Physics Communications, 2021, 261, 107733.                                             | 3.0 | 5         |
| 92  | Properties of the scalar variance transport equation in turbulent channel flow. Physical Review Fluids, 2019, 4, .                                                 | 1.0 | 4         |
| 93  | Strong Rayleigh–Darcy convection regime in three-dimensional porous media. Journal of Fluid<br>Mechanics, 2022, 943, .                                             | 1.4 | 4         |
| 94  | Optimised prefactored compact schemes for linear wave propagation phenomena. Journal of Computational Physics, 2017, 328, 66-85.                                   | 1.9 | 3         |
| 95  | Energy-based decomposition of friction drag in turbulent square-duct flows. International Journal of<br>Heat and Fluid Flow, 2020, 86, 108731.                     | 1.1 | 3         |
| 96  | Modal Analysis of Separation Bubble Unsteadiness in Conical Shock Wave/Turbulent Boundary Layer<br>Interaction. AIAA Journal, 2022, 60, 5123-5135.                 | 1.5 | 3         |
| 97  | Self-Sustained Oscillations in Shock Wave/Turbulent Boundary Layer Interaction. , 2006, , .                                                                        |     | 2         |
| 98  | Flow organization near shear layers in turbulent wall-bounded flows. Journal of Turbulence, 2011, 12,<br>N41.                                                      | 0.5 | 2         |
| 99  | High-Reynolds-number effects on turbulent scalings in compressible channel flow. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 489-490.              | 0.2 | 2         |
| 100 | WP-2 Basic Investigation of Transition Effect. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 129-225.                                   | 0.2 | 2         |
| 101 | Reynolds number effects and outer similarity of pressure fluctuations in turbulent pipe flow.<br>International Journal of Heat and Fluid Flow, 2022, 96, 108998.   | 1.1 | 2         |
| 102 | A structural model for the vortex tubes of isotropic turbulence. Theoretical and Computational Fluid Dynamics, 2009, 23, 55-62.                                    | 0.9 | 1         |
| 103 | Wall pressure fluctuations in transonic shock/boundary layer interaction. Procedia Engineering, 2010, 6, 303-311.                                                  | 1.2 | 1         |
| 104 | Multi-variate Statistics of the Wall Pressure Field beneath Supersonic Turbulent Boundary Layers. ,<br>2012, , .                                                   |     | 1         |
| 105 | Shear/Buoyancy Interaction in Wall Bounded Turbulent Flows. Springer Proceedings in Physics, 2019, ,<br>47-54.                                                     | 0.1 | 1         |
| 106 | WP-1 Reference Cases of Laminar and Turbulent Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 25-127.                       | 0.2 | 1         |
| 107 | Analysis of secondary motions in square duct flow. Journal of Physics: Conference Series, 2018, 1001, 012009.                                                      | 0.3 | 0         |
| 108 | Finite Difference Methods for Incompressible and Compressible Turbulence. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2019, , 55-118. | 0.3 | 0         |

| #   | Article                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nonequilibrium effects in near-wake ionizing flows. AIAA Journal, 1997, 35, 1151-1163. | 1.5 | 0         |