BPYNoël

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822019/publications.pdf

Version: 2024-02-01

65 papers 5,283 citations

94433 37 h-index 65 g-index

94 all docs 94
docs citations

times ranked

94

4012 citing authors

#	Article	IF	CITATIONS
1	BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 2017, 44, 11051-11061.	4.0	536
2	Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9239-9244.	7.1	452
3	On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 2016, 10, 1933-1946.	3.9	358
4	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ2: Antarctica (1979–2016). Cryosphere, 2018, 12, 1479-1498.	3.9	268
5	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ1: Greenland (1958–2016). Cryosphere, 2018, 12, 811-831.	3.9	194
6	Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters, 2014, 41, 7209-7216.	4.0	190
7	Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 2015, 9, 1831-1844.	3.9	175
8	Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 2016, 7, 10266.	12.8	164
9	Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Followâ€On Missions. Geophysical Research Letters, 2020, 47, e2020GL087291.	4.0	155
10	Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment, 2020, 1 , .	6.8	153
11	A highâ€resolution record of Greenland mass balance. Geophysical Research Letters, 2016, 43, 7002-7010.	4.0	146
12	Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 2019, 5, eaaw 0123 .	10.3	136
13	AÂdaily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere, 2016, 10, 2361-2377.	3.9	126
14	Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 2018, 564, 104-108.	27.8	114
15	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	3.9	111
16	Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nature Geoscience, 2017, 10, 859-863.	12.9	110
17	Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. Journal of Geophysical Research: Oceans, 2018, 123, 1827-1837.	2.6	110
18	The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters, 2016, 43, 9739-9748.	4.0	97

#	Article	IF	CITATIONS
19	Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Current Climate Change Reports, 2017, 3, 345-356.	8.6	94
20	Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience, 2019, 12, 277-283.	12.9	87
21	Ocean forcing drives glacier retreat in Greenland. Science Advances, 2021, 7, .	10.3	86
22	Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere, 2018, 12, 3813-3825.	3.9	83
23	A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere, 2019, 13, 2259-2280.	3.9	79
24	Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry. Nature Geoscience, 2017, 10, 366-369.	12.9	74
25	Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere, 2015, 9, 2009-2025.	3.9	73
26	A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 2017, 8, 14730.	12.8	72
27	Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10622-E10631.	7.1	66
28	Six Decades of Glacial Mass Loss in the Canadian Arctic Archipelago. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1430-1449.	2.8	65
29	Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 2017, 5, .	1.8	62
30	Greenland liquid water discharge from 1958 through 2019. Earth System Science Data, 2020, 12, 2811-2841.	9.9	54
31	Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 2020, 11 , 4597.	12.8	52
32	Atmospheric forcing of rapid marine-terminating glacier retreat in the Canadian Arctic Archipelago. Science Advances, 2019, 5, eaau8507.	10.3	48
33	Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Annals of Glaciology, 2016, 57, 25-38.	1.4	46
34	Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. Cryosphere, 2015, 9, 1203-1211.	3.9	46
35	Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere, 2014, 8, 1871-1883.	3.9	43
36	Rapid dynamic activation of a marineâ€based Arctic ice cap. Geophysical Research Letters, 2014, 41, 8902-8909.	4.0	43

#	Article	IF	Citations
37	Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016). Cryosphere, 2018, 12, 1643-1649.	3.9	42
38	Greenland Ice Sheet flow response to runoff variability. Geophysical Research Letters, 2016, 43, 11295-11303.	4.0	29
39	A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters, 2021, 48, e2020GL090471.	4.0	29
40	Development of physically based liquid water schemes for Greenland firn-densification models. Cryosphere, 2019, 13, 1819-1842.	3.9	26
41	Greenland ice sheet mass balance from 1840 through next week. Earth System Science Data, 2021, 13, 5001-5025.	9.9	26
42	Presentâ€Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005318.	2.8	24
43	Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Communications, 2021, 12, 6069.	12.8	23
44	Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017. Earth and Planetary Science Letters, 2019, 515, 154-163.	4.4	21
45	Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	20
46	Surface mass balance downscaling through elevation classes in an Earth system model: application to the Greenland ice sheet. Cryosphere, 2019, 13, 3193-3208.	3.9	18
47	Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland). Cryosphere, 2017, 11, 805-825.	3.9	17
48	Application of PROMICE Qâ€Transect in Situ Accumulation and Ablation Measurements (2000–2017) to Constrain Mass Balance at the Southern Tip of the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1235-1256.	2.8	16
49	Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere, 2018, 12, 2981-2999.	3.9	15
50	Steep Glacier Bed Knickpoints Mitigate Inland Thinning in Greenland. Geophysical Research Letters, 2021, 48, e2020GL090112.	4.0	15
51	Evaluation of Reconstructions of Snow/Ice Melt in Greenland by Regional Atmospheric Climate Models Using Laser Altimetry Data. Geophysical Research Letters, 2018, 45, 8324-8333.	4.0	14
52	Accelerating Ice Loss From Peripheral Glaciers in North Greenland. Geophysical Research Letters, 2022, 49, .	4.0	14
53	Greenland ice-sheet wide glacier classification based on two distinct seasonal ice velocity behaviors. Journal of Glaciology, 2021, 67, 1241-1248.	2.2	12
54	Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. Cryosphere, 2020, 14, 1425-1435.	3.9	11

#	Article	IF	Citations
55	Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere, 2020, 14, 1747-1762.	3.9	11
56	Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 202-229.	3.3	10
57	Evaluation of CloudSat's Cloudâ€Profiling Radar for Mapping Snowfall Rates Across the Greenland Ice Sheet. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031411.	3.3	10
58	Bayesian calibration of firn densification models. Cryosphere, 2020, 14, 3017-3032.	3.9	10
59	Calibration of a frontal ablation parameterisation applied to Greenland's peripheral calving glaciers. Journal of Glaciology, 2021, 67, 1177-1189.	2.2	9
60	Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events. Cryosphere, 2019, 13, 2241-2257.	3.9	8
61	North Atlantic Cooling is Slowing Down Mass Loss of Icelandic Glaciers. Geophysical Research Letters, 2022, 49, .	4.0	7
62	Arctic glaciers record wavier circumpolar winds. Nature Climate Change, 2022, 12, 249-255.	18.8	7
63	Estimating Ice Discharge at Greenland's Three Largest Outlet Glaciers Using Local Bedrock Uplift. Geophysical Research Letters, 2021, 48, e2021GL094252.	4.0	6
64	Coralline Algae Archive Fjord Surface Water Temperatures in Southwest Greenland. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2617-2626.	3.0	5
65	Spatiotemporal variations of extreme events in surface mass balance over Greenland during 1958â \in 2019. International Journal of Climatology, 0, , .	3.5	1