Vyacheslav Rusakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5822007/publications.pdf

Version: 2024-02-01

194 papers 1,708 citations

361413 20 h-index 32 g-index

202 all docs 202 docs citations

times ranked

202

1521 citing authors

#	Article	IF	CITATIONS
1	SpectrRelax: An application for Mol^ssbauer spectra modeling and fitting. AIP Conference Proceedings, 2012, , .	0.4	260
2	Nanocomposite protective coatings based on Ti–N–Cr/Ni–Cr–B–Si–Fe, their structure and properties Vacuum, 2009, 83, S235-S239.	3.5	53
3	Study of spatial spin-modulated structures by MÃ \P ssbauer spectroscopy using SpectrRelax. AIP Conference Proceedings, 2014, , .	0.4	46
4	Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1. Icarus, 2009, 202, 336-353.	2.5	40
5	Behavior of LiFe1â^'yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation. Journal of Power Sources, 2015, 300, 444-452.	7.8	40
6	Mössbauer Spectroscopy of Locally Inhomogeneous Systems. Hyperfine Interactions, 2006, 164, 87-97.	0.5	39
7	LiFe1â^'MIIPO4/C (MII= Co, Ni, Mg) as cathode materials for lithium-ion batteries. Electrochimica Acta, 2014, 122, 180-186.	5.2	38
8	Enthalpy of formation of natural hydrous iron phosphate: Vivianite. Journal of Chemical Thermodynamics, 2017, 110, 193-200. Charge disproportionation in small math xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.0	31
9	display="inline"> <mml:mi>R</mml:mi> NiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:math>		

#	Article	IF	Citations
19	Genomic Insights Into Energy Metabolism of Carboxydocella thermautotrophica Coupling Hydrogenogenic CO Oxidation With the Reduction of Fe(III) Minerals. Frontiers in Microbiology, 2018, 9, 1759.	3.5	23
20	TEMPLATE SYNTHESIS AND MAGNETIC CHARACTERIZATION OF FENI NANOTUBES. Progress in Electromagnetics Research C, 2017, 75, 23-30.	0.9	22
21	Iron oxide @ gold nanoparticles: Synthesis, properties and potential use as anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125178.	4.7	21
22	Mössbauer investigations of hyperfine interactions features of 57Fe nuclei in BiFeO3 ferrite., 2014,,.		20
23	Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	19
24	FeNi nanotubes: perspective tool for targeted delivery. Applied Nanoscience (Switzerland), 2019, 9, 835-844.	3.1	18
25	On the evolution of the DyNiO3 perovskite across the metal–insulator transition though neutron diffraction and Mössbauer spectroscopy studies. Dalton Transactions, 2008, , 6584.	3.3	17
26	Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples. Icarus, 2015, 262, 44-57.	2.5	17
27	Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance. Journal of Solid State Electrochemistry, 2017, 21, 2373-2380.	2.5	17
28	Structure and physical properties of iron nanotubes obtained by template synthesis. Physics of the Solid State, 2017, 59, 784-790.	0.6	17
29	Study of Magnetic Properties of Fe100-xNix Nanostructures Using the Mössbauer Spectroscopy Method. Nanomaterials, 2019, 9, 757.	4.1	17
30	FeCo nanotubes: possible tool for targeted delivery of drugs and proteins. Applied Nanoscience (Switzerland), 2019, 9, 1091-1099.	3.1	17
31	A new mineral species ferricoronadite, Pb[Mn6 4+(Fe3+, Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties. Physics and Chemistry of Minerals, 2016, 43, 503-514.	0.8	15
32	LiFe1-XMgXPO4/C as cathode materials for lithium-ion batteries. Solid State Ionics, 2018, 317, 149-155.	2.7	15
33	An improved model for the interpretation of Mossbauer spectra of dioctahedral 2:1 trans-vacant Fe-rich micas: refinement of parameters. European Journal of Mineralogy, 2009, 21, 995-1008.	1.3	13
34	Mössbauer study of layered iron hydroxysulfides: Tochilinite and valleriite. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1269-1272.	0.6	12
35	Investigation of the structure and physicochemical properties of combined nanocomposite coatings based on Ti–N–Cr/Ni–Cr–B–Si–Fe. Russian Physics Journal, 2009, 52, 1317-1324.	0.4	12
36	Lithium intercalation and deintercalation into lithium–iron phosphates doped with cobalt. Mendeleev Communications, 2013, 23, 251-252.	1.6	12

#	Article	IF	CITATIONS
37	Mössbauer study of the modulated magnetic structure of FeVO4. Journal of Experimental and Theoretical Physics, 2017, 124, 943-956.	0.9	12
38	Evidence through $M\tilde{A}\P$ ssbauer spectroscopy of two different states for 57Fe probe atoms in RNiO3perovskites with intermediate-size rare earths, R = Sm,Eu,Gd,Dy. Journal of Physics Condensed Matter, 2007, 19, 036201.	1.8	11
39	57Fe Mössbauer study of new multiferroic AgFeO2. Hyperfine Interactions, 2014, 226, 41-50.	0.5	11
40	Mössbauer investigations of natural and synthetic tochilinite and valleriite. European Physical Journal D, 2006, 56, E123-E131.	0.4	10
41	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts><mml:mi>Fe</mml:mi><mml:mprescripts><mml:mn>57</mml:mn></mml:mprescripts></mml:mmultiscripts> MA¶ssbauer spectroscopy study of cycloidal spin arrangements and magnetic transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiF</mml:mi><mml:msub><mml:m< td=""><td></td><td>10</td></mml:m<></mml:msub></mml:mrow></mml:math>		10
42	mathvariant="normal">e <mml:mrow><mml:mn> l</mml:mn><mml:mo>a"</mml:mo>a"<td>nl:mi>2.1</td><td>ml:mrow> < 9</td></mml:mrow>	nl:mi>2.1	ml:mrow> < 9
43	Mössbauer Study of Thin Iron Film Beryllization. Hyperfine Interactions, 2002, 141/142, 453-457.	0.5	9
44	Thermal stabilization of phase and structural state in binary lamellar metallic systems. Journal of Physics Condensed Matter, 2006, 18, 4113-4126.	1.8	9
45	Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry. Hyperfine Interactions, 2008, 182, 55-63.	0.5	9
46	Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with [sup 57]Fe Moi^ssbauer Spectroscopy. AIP Conference Proceedings, 2010, , .	0.4	9
47	Specific features of the structural transformations in La1 \hat{a} x Ca x Mn0.98 57Fe0.02O3 + \hat{l} (x = 0.05 \hat{a} 0.50). Physics of the Solid State, 2011, 53, 1440-1447.	0.6	9
48	Structure-phase transformations in the Be–Fe–Be layered system subjected to irradiation and thermal treatment. Journal of Physics and Chemistry of Solids, 2013, 74, 1078-1085.	4.0	9
49	Octahedral cation distribution in glauconites from Southern Urals by combination of crystal-chemical model and quasi-continuous model-independent quadrupole splitting distributions (QSD) fitted to their MA¶ssbauer spectra. European Journal of Mineralogy, 2013, 25, 405-414.	1.3	9
50	Vesuvianite from the Somma-Vesuvius Complex: New Data and Revised Formula. Minerals (Basel,) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50
51	Mössbauer Study of Magnetite Formation by Iron- and Sulfate-Reducing Bacteria. Hyperfine Interactions, 2004, 156/157, 411-415.	0.5	8
52	Thermally Induced Processes of Intermetalloid Phase Formation in Laminar Systems Fe–Sn. Hyperfine Interactions, 2004, 156/157, 623-628.	0.5	8
53	Laws of thermally induced formation of phases in \hat{l}_{\pm} -Fe with a titanium coating upon isochronous annealings. Physics of Metals and Metallography, 2010, 109, 447-460.	1.0	8
54	Reduction of amorphous Fe(III)-hydroxide by binary microbial culture, a Mössbauer study. Hyperfine Interactions, 2010, 197, 325-330.	0.5	8

#	Article	IF	CITATIONS
55	Influence of oxygen fugacity and temperature on the redox state of iron in natural silicic aluminosilicate melts. Geochemistry International, 2012, 50, 330-343.	0.7	8
56	Magnesiovoltaite, $K2Mg5Fe3+3Al(SO4)12\hat{A}\cdot18H2O$, a new mineral from the Alcaparrosa mine, Antofagasta region, Chile. European Journal of Mineralogy, 2016, 28, 1005-1017.	1.3	8
57	Mössbauer studies of multiferroics BiFe1 â€" x Cr x O3 (x = 0â€"0.20). Physics of the Solid State, 2017, 59, 1558-1564.	0.6	8
58	X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature. Physics and Chemistry of Minerals, 2017, 44, 577-593.	0.8	8
59	Siudaite, Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula. Physics and Chemistry of Minerals, 2018, 45, 745-758.	0.8	8
60	Analysis of the Magnetic Structure of the BiFeO3 Multiferroic by Mössbauer Spectroscopy. Doklady Physics, 2018, 63, 223-226.	0.7	8
61	Hyperfine Magnetic Fields at the Nuclei of 57Fe in the Intermetallic System Zr1 –xScxFe2. Physics of Metals and Metallography, 2019, 120, 339-344.	1.0	8
62	Diffusion and phase formation in thin two-layer Fe–Be films after subsequent isochronous annealing. Nuclear Instruments & Methods in Physics Research B, 2001, 174, 463-474.	1.4	7
63	Hole defects in the crystal structure of synthetic lipscombite (Fe 4.7 3+ Fe 2.3 2+)[PO4]4O2.7(OH)1.3 and genetic crystal chemistry of minerals of the lipscombite-barbosalite series. Crystallography Reports, 2006, 51, 401-411.	0.6	7
64	Structures and properties of Ti alloys after double implantation. Vacuum, 2009, 83, S240-S244.	3.5	7
65	Mössbauer study of formation of iron oxides and carbonate by dissimilatory alkaliphilic bacterium. Journal of Physics: Conference Series, 2010, 217, 012055.	0.4	7
66	Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei. JETP Letters, 2014, 98, 544-550.	1.4	7
67	Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 744-752.	1.1	7
68	Temperature Mössbauer study of the spatial spin-modulated structure in the multiferroic BiFeO ₃ . EPJ Web of Conferences, 2018, 185, 07010.	0.3	7
69	Phase transformations as a result of thermal annealing of nanocomposite Fe–Ni / Fe–Ni–O particles. Ceramics International, 2020, 46, 1586-1595.	4.8	7
70	Mössbauer effect study of Co, Ni, Mn, and Al bearing goethites. Hyperfine Interactions, 1989, 46, 689-693.	0.5	6
71	Phase transformation studies in implantation induced iron–metalloid systems studied by Mössbauer spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2000, 170, 85-97.	1.4	6
72	Reason for line broadening in emission Mössbauer spectra. Journal of Radioanalytical and Nuclear Chemistry, 2005, 266, 557-560.	1,5	6

#	Article	IF	CITATIONS
73	Electronic state of 57Fe used as Mössbauer probe in the perovskites LaMO3 (M=Ni and Cu). Journal of Solid State Chemistry, 2007, 180, 3253-3261.	2.9	6
74	Spatial spin-modulated structure and hyperfine interactions of 57Fe nuclei in multiferroics BiFe1â \in "x T x O3 (T = Sc, Mn; x = 0, 0.05). Physics of the Solid State, 2016, 58, 102-107.	0.6	6
75	$M\tilde{A}\P$ ssbauer study of iron minerals transformations by Fuchsiella ferrireducens. Hyperfine Interactions, 2017, 238, 1.	0.5	6
76	Changes in the Magnetic Structure of Multiferroic BiFe0.80Cr0.20O3 with Temperature. Physics of the Solid State, 2019, 61, 1030-1036.	0.6	6
77	Study of Delithiation Process Features in Li <i>_x</i> Fe _{0.8} M _{0.2} PO ₄ (M = Mg, Mn, Co, Ni) by Mössbauer Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 13026-13035.	3.1	6
78	$M\tilde{A}\P$ ssbauer studies of the atomic distributions and hyperfine interactions in Mn-Fe alloys with \hat{I}^2 -Mn structure. Physics of the Solid State, 1997, 39, 1276-1280.	0.6	5
79	Mössbauer Investigation of Biologically-Induced Mineralization Processes. , 2002, , 397-400.		5
80	Precision X-ray diffraction and Mössbauer studies and computer simulation of the structure and properties of malayaite CaSnOSiO4. Crystallography Reports, 2002, 47, 759-767.	0.6	5
81	Examination of Synthetic Murataite Structure Using Data of Mossbauer Spectroscopy. Materials Research Society Symposia Proceedings, 2003, 807, 80.	0.1	5
82	Mössbauer spectroscopy in studying magnetite formed by iron- and sulfate-reducing bacteria. European Physical Journal D, 2005, 55, 781-790.	0.4	5
83	Mössbauer Study of Ferrite-garnets as Matrixes for Disposal of Highly Radioactive Waste Products. Hyperfine Interactions, 2006, 164, 99-104.	0.5	5
84	Effects of trapped electrons on the line shape in emission MATssbauer spectra. Hyperfine Interactions, 2006, 167, 881-885.	0.5	5
85	Investigation of the manganite CaMn7O12 through 57Fe probe Mössbauer spectroscopy in two different temperature domains. Solid State Communications, 2007, 142, 509-514.	1.9	5
86	Mössbauer study of tektites. Hyperfine Interactions, 2008, 186, 83-88. Magnetic exchange interactions and supertransferred hyperfine fields at <mml:math< td=""><td>0.5</td><td>5</td></mml:math<>	0.5	5
87	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mmi:msup><mmi:mrow /><mml:mn>119</mml:mn>Sn probe atoms in CaCu<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>Mn<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathMt" display="inline"><mml:msub><mml:mrow< td=""><td>3.2</td><td>5</td></mml:mrow<></mml:msub></mml:math </mml:math </mmi:mrow </mmi:msup>	3.2	5
88	xmlns:mml="http://www.w3.org/13936/Math/MathMtc" display="inline"> <mmlcmsub><mmlcmrow></mmlcmrow><mml: 20,="" 2012,="" 347-355.<="" and="" between="" interaction="" iron="" meteoritic="" petrology,="" shock="" silicates.="" td="" wave-induced=""><td>0.9</td><td>5</td></mml:></mmlcmsub>	0.9	5
89	Hyperfine-interaction parameters and magnetic phase antiferromagnet $\hat{\epsilon}$ "ferromagnet transition in Ce(Fe1 $\hat{\epsilon}$ × Si x)2. Physics of Metals and Metallography, 2016, 117, 1185-1191.	1.0	5
90	Lithium-containing Na–Fe-amphibole from cryolite rocks of the Katugin rare-metal deposit <i>(Transbaikalia, Russia)</i>: chemical features and crystal structure . Russian Geology and Geophysics, 2016, 57, 1191-1203.	0.7	5

#	Article	IF	Citations
91	On the interconnection of the magnetic hyperfine fields in sublattices of spinal-type ferrites. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 99, 253-254.	2.1	4
92	Tetragonalization of (Ca3â^'x Ax)(Zr2â^'y Fey)Fe3O12 (A = Ce, Th, Gd) ferrite garnets as revealed by $M\tilde{A}\P$ ssbauer spectroscopy and the Rietveld analysis. Doklady Physics, 2004, 49, 715-722.	0.7	4
93	Local structure, chemical bond parameters and hyperfine magnetic interactions of 57Fe and doped 119Sn atoms in the orthoferrites TIFeO3 and TIFeO.99SnO.01O3. Journal of Physics Condensed Matter, 2006, 18, 8943-8959.	1.8	4
94	Mössbauer studies of natural glasses of impact and volcanic origin. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2007, 62, 187-192.	0.4	4
95	Mössbauer Study of Iron Minerals Formed by Dissimilatory Bacterium. Solid State Phenomena, 0, 152-153, 431-434.	0.3	4
96	Mössbauer study of isomorphous substitutions in Cu2Fe1-xCuxSnS4and Cu2Fe1-xZnxSnS4series. Journal of Physics: Conference Series, 2010, 217, 012038.	0.4	4
97	Simulation of thermally induced processes of diffusion and phase formation in layered Fe-Sn and Fe-Zr systems. Journal of Surface Investigation, 2011, 5, 601-609.	0.5	4
98	Study of structural and valence state of Cr and Fe in chrysoberyl and alexandrite with EPR and Mössbauer spectroscopy. Moscow University Geology Bulletin, 2011, 66, 102-107.	0.3	4
99	Mössbauer and Magnetic Study of Solid Phases Formed by Dissimilatory Iron-Reducing Bacteria. Solid State Phenomena, 2012, 190, 721-724.	0.3	4
100	Mössbauer study of dissimilatory reduction of iron contained in glauconite by alkaliphilic bacteria. Hyperfine Interactions, 2012, 208, 85-89.	0.5	4
101	Mössbauer study of bacterial iron-reduction processes in natural glauconite and biotite. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 734-738.	0.6	4
102	Iron-rich bustamite from Broken Hill, Australia: The crystal structure and cation-ordering features. Crystallography Reports, 2015, 60, 340-345.	0.6	4
103	A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2016, 71, 193-201.	0.4	4
104	Studying the properties of Fe and Fe–Co nanotubes in polymer ion-track membranes. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 831-835.	0.6	4
105	Insights into crystal chemistry of the vesuvianite-group: manaevite-(Ce), a new mineral with complex mechanisms of its hydration. Physics and Chemistry of Minerals, 2020, 47, 1.	0.8	4
106	Mössbauer, Nuclear Forward Scattering, and Raman Spectroscopic Approaches in the Investigation of Bioinduced Transformations of Mixed-Valence Antimony Oxide. Journal of Physical Chemistry A, 2021, 125, 139-145.	2.5	4
107	57Fe Mössbauer Study of Spatial Spin-Modulated Structure in BiFeO3. Journal of Materials Science and Engineering B, 2014, 4, .	0.3	4
108	Peculiar Spin-Crossover Behavior in the 2D Polymer K[Fe ^{III} (5Cl-thsa) ₂]. Inorganic Chemistry, 2021, 60, 17462-17479.	4.0	4

#	Article	IF	CITATIONS
109	Investigations of sulfide minerals with layered structure by MÃ \P ssbauer spectroscopy methods. Hyperfine Interactions, 2006, 166, 613-617.	0.5	3
110	Mössbauer studies of the thermal stability of layered metallic systems. Physics of Metals and Metallography, 2007, 104, 372-380.	1.0	3
111	Moi^ssbauer Investigations of Cu[sub 3â^'x]Fe[sub x]SnS[sub 4] and Cu[sub 2]Fe[sub 1â^'x]Zn[sub x]SnS[sub 4] Systems. , 2008, , .		3
112	$M\tilde{A}\P$ ssbauer study of compounds of Cu3 \hat{a} ° x Fe x SnS4 and Cu2Fe1 \hat{a} ° x Zn x SnS4 systems. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 389-393.	0.6	3
113	[sup 57]Fe and [sup 119]Sn Moi^ssbauer Effect Study of Fe-Sn-B Amorphous Alloys. , 2010, , .		3
114	Moi^ssbauer study of biogenic formation processes of iron minerals. AIP Conference Proceedings, 2012,	0.4	3
115	Mössbauer investigations of synthetic valleriite. Hyperfine Interactions, 2012, 208, 99-104.	0.5	3
116	Crystal structure and phase transition in the doped superâ€ionic conductor bismuth vanadate Bi ₄ (V,Fe) ₂ O ₁₁ revealed by neutron diffraction. Physica Status Solidi (B): Basic Research, 2013, 250, 1345-1351.	1.5	3
117	Hilarionite, Fe 2 3+ (SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece. Geology of Ore Deposits, 2014, 56, 567-575.	0.7	3
118	Mössbauer and magnetic studies of nanocomposites containing iron oxides and humic acids. Hyperfine Interactions, 2014, 226, 153-159.	0.5	3
119	$M\tilde{A}$ ¶ssbauer studies of BiFe1â \in "x Sc x O3 (x = 0, 0.05) Multiferroics. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 976-979.	0.6	3
120	Temperature investigations of the spatial spin-modulated structure of multiferroic BiFeO3 by means of Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 708-711.	0.6	3
121	Mössbauer studies of spatial spin-modulated structure and hyperfine interactions in multiferroic Bi57Fe0.10Fe0.85Cr0.05O3. Physics of the Solid State, 2017, 59, 443-449.	0.6	3
122	Zincovelesite-6N6S, Zn3(Fe3+,Mn3+,Al,Ti)8O15(OH), a new högbomite-supergroup mineral from Jacupica mountains, Republic of Macedonia. Mineralogy and Petrology, 2018, 112, 733-742.	1.1	3
123	Mössbauer and Magnetic Studies of Doped Lanthanum Manganite La1 – xCaxMn0.98Fe0.02O3 + δ (x = 0.05,)	Tj.ETQq1	1 ₃ 0.78431
124	Iron distribution in Fe-rich bustamite-type minerals. Physics and Chemistry of Minerals, 2019, 46, 133-142.	0.8	3
125	Mössbauer and Magnetic Studies of Doped Lanthanum Manganite La1–ÂxCaxMn0.98Fe0.02O3 (x = 0.05,) Tj 2019, 13, 462-468.	ETQq1 1 0.5	0.784314
126	The effect of electron irradiation on the structure and properties of \hat{l}_{\pm} -Fe2O3 nanoparticles as cathode material. Ceramics International, 2020, 46, 13580-13587.	4.8	3

#	Article	IF	CITATIONS
127	Alkaline-earth metal-doped perovskites La0.95A0.05MnO3+ $\hat{\Gamma}$ (A = Ca, Sr): New structural and magnetic features revealed by 57Fe Mössbauer spectroscopy and magnetic measurements. Journal of Physics and Chemistry of Solids, 2021, 159, 110268.	4.0	3
128	MÃ-ssbauer Study of Iron Sulfide Crystallization Processes. , 2002, , 461-464.		3
129	An57Fe Mössbauer study of iron concretions in weathered, nickeliferous Cuban crust. Hyperfine Interactions, 1990, 57, 2195-2199.	0.5	2
130	High-Temperature Microbial Sulfate Reduction Can Be Accompanied by Magnetite Formation. Microbiology, 2004, 73, 469-473.	1.2	2
131	The Radio Absorptive Materials on the Basis of "Core-Shell" Nanoparticles in Polymeric Matrix. , 2007, , .		2
132	Mössbauer investigations of the CaMn7O12 double manganite with the nuclei of 57Fe probe atoms. JETP Letters, 2007, 85, 444-448.	1.4	2
133	119Sn and 57Fe Mössbauer study of the local structure of perovskite-type ferrites CaFe2 \hat{a} ° x N x O5 (N =) Tj E 1314-1321.	TQq1 1 0. 0.6	784314 rgBT 2
134	Local Environment and Electronic Structure in K2NiF4-type La2Li0.50Cu0.50O4 Doped by 57Fe. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 244-250.	0.7	2
135	EMR Spectra of Iron-Based Nanoparticles Produced by Dissimilatory Bacteria. Solid State Phenomena, 2009, 152-153, 415-418.	0.3	2
136	Electronic state of 57Fe Mössbauer probe atoms in Cu(III) oxides with perovskite and perovskite-related structures. Materials Chemistry and Physics, 2009, 113, 462-467.	4.0	2
137	Structure of the local environment and hyperfine interactions of 57Fe probe atoms in DyNiO3 nickelate. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 335-338.	0.6	2
138	Structural Transformations Features Comparison in LaMnO[sub 3+l̂] and La[sub 1â^'x]Sr[sub x]MnO[sub 3+l̂] (x = 0.05–0.2). , 2010, , .		2
139	Simulation of diffusion and phase formation during isothermal annealing of lamellar Fe-Zr systems. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq1 1 0.78-	43 1 644 gBT	/O≥erlock 1.0
140	Simulation of thermally-induced processes of diffusion and phase formation in layered metal-metalloid systems. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0 0 0 rgBT	Ov e rłłock	10 1 f 50 217
141	Structural transformations in La1 \hat{a} ° x Ba x Mn0.98 57Fe0.02O3 + \hat{l} (x = 0.05 \hat{a} °0.20). Physics of the Solid State, 2012, 54, 593-600.	0.6	2
142	Hyperfine interactions of 57Fe impurity nuclei in TmNiO3 and YbNiO3 nickelates in the range of magnetic and structure phase transitions. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 672-677.	0.6	2
143	Quadrupole interactions in tetraoxoferrates (VI). Hyperfine Interactions, 2013, 222, 67-72.	0.5	2
144	Fluctuations of structural transformations in La0.95Ba0.05Mn0.9857Fe0.02O3+δ under heat treatment. Materials Letters, 2013, 96, 82-84.	2.6	2

#	Article	IF	CITATIONS
145	Study of nanocomposites based on iron oxides and pectin. , 2014, , .		2
146	57Fe $M\tilde{A}\P$ ssbauer study of Li x Fe1-y Co y PO4 (y = 0, 0.1, 0.2) as cathode material for Li-ion batteries. Hyperfine Interactions, 2014, 226, 791-796.	0.5	2
147	Study of radiation-induced processes in a layered Be-Fe-Be system subjected to ion irradiation and subsequent isochronous annealings. Physics of Metals and Metallography, 2014, 115, 765-774.	1.0	2
148	Specific features of magnetic states of impurity iron ions in the perovskite La0.75Sr0.25Co0.98 57Fe0.02O3. Physics of the Solid State, 2016, 58, 315-318.	0.6	2
149	Mössbauer and EPR study of ferrihydrite and siderite biotransformations by a syntrophic culture of alkaliphilic bacteria. Journal of Molecular Structure, 2020, 1206, 127606.	3.6	2
150	The effect of temperature on parameters of hyperfine interactions and spatial spin-modulated structure in multiferroic BiFeO ₃ . Ferroelectrics, 2020, 569, 286-294.	0.6	2
151	Mössbauer and Magnetic Study of Lanthanum Manganite La1–ÂxCaxMn0.98Fe0.02O3Â+Âδ (x = 0.05, 0.10, Nonstoichiometric and Stoichiometric Composition. Crystallography Reports, 2020, 65, 347-351.	0,20):	2
152	Synthesis Of Iron Sulfides: A Mössbauer Study. , 2003, , 261-270.		2
153	The spin glass transition in tin-containing pseudobrookite. Journal of Magnetism and Magnetic Materials, 1995, 150, 101-104.	2.3	1
154	Study of the kinetics of bacterial synthesis of iron minerals by Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1291-1295.	0.6	1
155	Electronic state of the 57Fe probe atoms in perovskites LaMO3 (M = Ni, Cu). Russian Journal of Inorganic Chemistry, 2009, 54, 1957-1963.	1.3	1
156	Magnetic hyperfine interactions of 119 Sn probe atoms in the binary perovskite CaCu3Mn4O12. Journal of Experimental and Theoretical Physics, 2009, 108, 605-615.	0.9	1
157	Comparison between the quasi-continuous quadrupole splitting distributions (QSD) for M¶ssbauer spectra of glauconites and the QSD-profiles simulated on the basis of crystal-chemical model. Journal of Physics: Conference Series, 2010, 217, 012052.	0.4	1
158	Simulation of thermally induced processes of diffusion and phase formation in layered binary metallic systems. Physics of Metals and Metallography, 2010, 109, 547-555.	1.0	1
159	Study of oxygen fugacity influence on redox state of iron in granitoidic melts. Journal of Physics: Conference Series, 2010, 217, 012050.	0.4	1
160	Hyperfine interactions of 57Fe impurity nuclei in multiferroic CuCrO2. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 971-975.	0.6	1
161	Mössbauer study of the reduction of synthesized ferrihydrite by the alkaliphilic iron-reducing bacterium Fuchsiella ferrireducens. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 895-900.	0.6	1
162	Modeling the Spatial Distribution of Snow Cover during the Spring Snowmelt. Russian Meteorology and Hydrology, 2019, 44, 136-144.	1.3	1

-	#	Article	IF	CITATIONS
:	163	Probe Mössbauer Diagnostics of Charge Ordering in Manganites CaCuxMn7–xO12 (0 ≠x ≠1). Journal of Experimental and Theoretical Physics, 2019, 129, 1017-1028.	0.9	1
:	164	Structural and Magnetic Characteristics of Ferrum Nanotubes Obtained at Different Potentials of Electrodeposition. Physica Status Solidi (B): Basic Research, 2020, 257, 1900319.	1.5	1
	165	Structure and Magnetic Characteristics of Metal-Polymeric Nanocomposites with Different Fe and Ni Concentrations on the Basis of Polyacrylonitrile. Journal of Nanoelectronics and Optoelectronics, 2010, 4, 325-328.	0.5	1
:	166	Magnetic hyperfine field distribution in pyrrhotites from Mössbauer spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 1991, 153, 423-429.	1.5	0
:	167	Mössbauer study of 119Sn hyperfine interactions in the KTilâ^'x SnxOPO4 system. Physics of the Solid State, 1998, 40, 302-307.	0.6	O
:	168	The photochemical interaction of polyphenylferrisiloxane with oligoorganosilanes. Russian Chemical Bulletin, 1998, 47, 478-481.	1.5	0
	169	State of iron atoms in SiO2·xFe2O3 gels. Physics of the Solid State, 1999, 41, 1307-1310.	0.6	O
:	170	Magnetic Microstructure and Electrical Properties of Ferrimagnetic Oxide Epilayers. Inorganic Materials, 2000, 36, 1251-1255.	0.8	0
:	171	Structure and Nonlinear Electrical Properties of Ni–Fe–Mg–O Epilayers. Inorganic Materials, 2001, 37, 170-173.	0.8	O
	172	Thermal Induced Processes in Laminar System of Stainless Steel – Beryllium. Hyperfine Interactions, 2006, 164, 73-85.	0.5	0
	173	State of iron atoms in synthetic ferrite garnets and zirconolitesâ€"matrices for disposal of actinide-containing waste. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1273-1278.	0.6	O
	174	The special features of the crystal structure and properties of oxides with mixed conductivity based on lanthanum gallate. Russian Journal of Physical Chemistry A, 2008, 82, 1640-1649.	0.6	0
	175	Study of thermal stabilization of an intermetallic compound-α-Fe(Sn) solid solution layered system. Physics of Metals and Metallography, 2010, 109, 461-468.	1.0	O
	176	Electronic state of 57Fe probe atoms in perovskite-type Ni(III) and Cu(III) oxides. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 384-388.	0.6	0
	177	Investigation of iron mineral formation by dissimilatory alcalophilic bacterium Geoalkalibacter ferrihydriticus using Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 402-406.	0.6	O
:	178	Physical model of thermally induced diffusion and phase-formation processes in layered systems containing three isotopes of two elements. Moscow University Physics Bulletin (English Translation) Tj ETQq0 0 0	r g B∏ /Ove	rloock 10 Tf !
:	179	Hyperfine magnetic fields at the nuclei of probe 119Sn atoms and exchange interactions in the CaCu3Mn3.96Sn0.04O12 manganite. Journal of Experimental and Theoretical Physics, 2011, 112, 617-624.	0.9	O
	180	57Fe and 119Sn probe $M\tilde{A}\P$ ssbauer spectroscopy investigation of perovskite-type double manganite family CaCu x Mn7 \hat{a} 'x O12 (x = 0, 0.15, 3). Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 271-276.	0.6	O

#	Article	IF	CITATIONS
181	Magnetic Exchange Interactions and Supertransferred Hyperfine Fields at ¹¹⁹ Sn Probe Atoms in CaCu ₃ Mn ₄ O ₁₂ Manganite. Solid State Phenomena, 0, 190, 695-698.	0.3	0
182	Moì^ssbauer investigations of structural changes in La[sub 0.95]Ba[sub 0.05]Mn[sub 0.98][sup 57]Fe[sub 0.02]O[sub $3+\hat{l}$] under heat treatment., 2012,,.		0
183	Structural transitions in La 0.95 Ba 0.05 Mn 0.98 57 Fe 0.02 O 3 under heat treatment. Hyperfine Interactions, 2014, 226, 65-71.	0.5	0
184	Thermodynamically nonequilibrium states in lanthanum manganite LaMnO3 doped with 5 at % Ba. Physics of the Solid State, 2014, 56, 2100-2106.	0.6	0
185	Local states of iron ions in Bi0.815Eu0.085La0.1FeO3 perovskite. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 967-970.	0.6	0
186	Magnetic states of iron ions in perovskite Bi0.75Sr0.25Fe0.95Cr0.05O3–y. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 774-777.	0.6	0
187	Charge dynamics of 57 Fe probe atoms in La 2 Li 0.5 Cu 0.5 O 4. Solid State Sciences, 2018, 80, 132-140.	3.2	0
188	Magnetic Hyperfine Interactions of 57Fe Probe Atoms in the CaCuxMn7 – xO12 (0 ≠x ≠1) Manganites. Journal of Experimental and Theoretical Physics, 2021, 132, 426-437.	0.9	0
189	Magnetic anisotropy and Mössbauer effect studies of YFe11and YFe11Ti H. Journal of Physics Condensed Matter, 2003, 15, .	1.8	0
190	Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry. , 2008, , 55-63.		0
191	Reduction of amorphous Fe(III)-hydroxide by binary microbial culture, a MÃ \P ssbauer study. , 2010, , 325-330.		0
192	\tilde{MAq} ssbauer study of dissimilatory reduction of iron contained in glauconite by alkaliphilic bacteria., 2012, , 665-669.		0
193	Galfenol/polyurethane Magnetoactive composites study by small angle scattering of resonant synchrotron radiation. Hyperfine Interactions, 2021, 242, 1.	0.5	0
194	Physicochemical Study of Titanium-Bearing Garnets. Geochemistry International, 2022, 60, 363-378.	0.7	0