
Michael R Baldwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5820125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F. Biochemistry, 2009, 48, 5631-5641.	2.5	132
2	An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2602-2607.	7.1	119
3	Gangliosides as High Affinity Receptors for Tetanus Neurotoxin. Journal of Biological Chemistry, 2009, 284, 26569-26577.	3.4	106
4	Subunit Vaccine against the Seven Serotypes of Botulism. Infection and Immunity, 2008, 76, 1314-1318.	2.2	105
5	The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability. Protein Expression and Purification, 2004, 37, 187-195.	1.3	68
6	Ezrin/Radixin/Moesin Proteins Are High Affinity Targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. Journal of Biological Chemistry, 2004, 279, 38402-38408.	3.4	61
7	Molecular Basis for Tetanus Toxin Coreceptor Interactions. Biochemistry, 2008, 47, 7179-7186.	2.5	58
8	Light Chain of Botulinum Neurotoxin Serotype A:  Structural Resolution of a Catalytic Intermediate,. Biochemistry, 2006, 45, 8903-8911.	2.5	57
9	Association of Botulinum Neurotoxin Serotypes A and B with Synaptic Vesicle Protein Complexesâ€. Biochemistry, 2007, 46, 3200-3210.	2.5	57
10	Recombinant Holotoxoid Vaccine against Botulism. Infection and Immunity, 2008, 76, 437-442.	2.2	56
11	Characterization of the Antibody Response to the Receptor Binding Domain of Botulinum Neurotoxin Serotypes A and E. Infection and Immunity, 2005, 73, 6998-7005.	2.2	54
12	Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins. Journal of Biological Chemistry, 2011, 286, 34015-34022.	3.4	46
13	Botulinum Neurotoxin Serotype C Associates with Dual Ganglioside Receptors to Facilitate Cell Entry. Journal of Biological Chemistry, 2012, 287, 40806-40816.	3.4	39
14	The Pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation. International Journal of Medical Microbiology, 2004, 293, 505-512.	3.6	33
15	Binding and entry of <i>Clostridium difficile</i> toxin B is mediated by multiple domains. FEBS Letters, 2015, 589, 3945-3951.	2.8	32
16	Identification and characterization of the Pasteurella multocida toxin translocation domain. Molecular Microbiology, 2004, 54, 239-250.	2.5	31
17	Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon, 2009, 54, 570-574.	1.6	31
18	Botulinum neurotoxin B–host receptor recognition: it takes two receptors to tango. Nature Structural and Molecular Biology, 2007, 14, 9-10.	8.2	27

MICHAEL R BALDWIN

#	Article	IF	CITATIONS
19	Tumor Biomarker Glycoproteins in the Seminal Plasma of Healthy Human Males Are Endogenous Ligands for DC-SIGN. Molecular and Cellular Proteomics, 2012, 11, M111.008730.	3.8	24
20	Pasteurella multocida Toxin Facilitates Inositol Phosphate Formation by Bombesin through Tyrosine Phosphorylation of Gαq. Journal of Biological Chemistry, 2003, 278, 32719-32725.	3.4	21
21	Tetanus Neurotoxin Utilizes Two Sequential Membrane Interactions for Channel Formation. Journal of Biological Chemistry, 2014, 289, 22450-22458.	3.4	14
22	The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms. Frontiers in Molecular Biosciences, 2018, 5, 46.	3.5	10
23	Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry, 2016, 55, 4885-4908.	2.5	7
24	Insights into the Mechanisms by Which Clostridial Neurotoxins Discriminate between Gangliosides. Biochemistry, 2017, 56, 2571-2583.	2.5	5
25	Evidence for dual receptorâ€binding sites in <i>Clostridium difficile</i> toxin A. FEBS Letters, 2016, 590, 4550-4563.	2.8	4
26	Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion. Biophysical Journal, 2021, 120, 4763-4776.	0.5	3
27	Clostridium sordelliias a Cause of Fatal Septic Shock in a Child with Hemolytic Uremic Syndrome. Case Reports in Pediatrics, 2014, 2014, 1-5.	0.4	1
28	Constructing Kinetically Controlled Denaturation Isotherms of Folded Proteins Using Denaturant-Pulse Chaperonin Binding. Methods in Molecular Biology, 2019, 1873, 293-304.	0.9	0