Laura M López-Mascaraque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5819622/publications.pdf

Version: 2024-02-01

75 papers 3,311 citations

33 h-index 55 g-index

78 all docs 78 docs citations

78 times ranked 3033 citing authors

#	Article	IF	CITATIONS
1	Astrocytes as essential <scp>timeâ€keepers</scp> of the central pacemaker. Glia, 2022, 70, 808-819.	4.9	10
2	Lineage Relationships Between Subpallial Progenitors and Glial Cells in the Piriform Cortex. Frontiers in Neuroscience, 2022, 16, 825969.	2.8	1
3	Deciphering neural heterogeneity through cell lineage tracing. Cellular and Molecular Life Sciences, 2021, 78, 1971-1982.	5.4	9
4	Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia, 2021, 69, 346-361.	4.9	19
5	Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Science Advances, 2021, 7, .	10.3	65
6	Gliogenic Potential of Single Pallial Radial Glial Cells in Lower Cortical Layers. Cells, 2021, 10, 3237.	4.1	6
7	Unraveling the adult cell progeny of early postnatal progenitor cells. Scientific Reports, 2020, 10, 19058.	3.3	7
8	A Clonal NG2-Glia Cell Response in a Mouse Model of Multiple Sclerosis. Cells, 2020, 9, 1279.	4.1	9
9	Cell Progeny in the Olfactory Bulb after Targeting Specific Progenitors with Different UbC-StarTrack Approaches. Genes, 2020, 11, 305.	2.4	7
10	Cell Fate Potential of NG2 Progenitors. Scientific Reports, 2020, 10, 9876.	3.3	15
11	Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. International Journal of Molecular Sciences, 2020, 21, 4350.	4.1	16
12	The role of clonal communication and heterogeneity in breast cancer. BMC Cancer, 2019, 19, 666.	2.6	36
13	Lineage Tracing and Cell Potential of Postnatal Single Progenitor Cells InÂVivo. Stem Cell Reports, 2019, 13, 700-712.	4.8	24
14	Sibling astrocytes share preferential coupling via gap junctions. Glia, 2019, 67, 1852-1858.	4.9	15
15	Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Reports, 2019, 27, 429-441.e3.	6.4	86
16	Clonal Clial Response in a Multiple Sclerosis Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 375.	3.7	22
17	Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biology, 2018, 16, e2005513.	5.6	42
18	Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes. Cell Stem Cell, 2018, 23, 557-571.e8.	11.1	79

#	Article	IF	CITATIONS
19	Clonal Mapping of Astrocytes in the Olfactory Bulb and Rostral Migratory Stream. Cerebral Cortex, 2017, 27, 2195-2209.	2.9	20
20	Olfactory System Embryonic Development. , 2016, , 275-281.		1
21	Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Frontiers in Neuroscience, 2016, 10, 194.	2.8	14
22	Editorial: 50th Anniversary of Adult Neurogenesis: Olfaction, Hippocampus, and Beyond. Frontiers in Neuroscience, 2016, 10, 319.	2.8	3
23	UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Scientific Reports, 2016, 6, 33896.	3.3	36
24	Decoding astrocyte heterogeneity: New tools for clonal analysis. Neuroscience, 2016, 323, 10-19.	2.3	31
25	Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Frontiers in Neuroscience, 2015, 9, 87.	2.8	13
26	Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages. Journal of Neuroscience, 2015, 35, 7388-7402.	3.6	62
27	Unraveling Cajal's view of the olfactory system. Frontiers in Neuroanatomy, 2014, 8, 55.	1.7	15
28	NG2-Glia from Pallial Progenitors Produce the Largest Clonal Clusters of the Brain: Time Frame of Clonal Generation in Cortex and Olfactory Bulb. Journal of Neuroscience, 2014, 34, 2305-2313.	3.6	33
29	From the Nose to the Brain: Olfaction and Neuroscience. Anatomical Record, 2013, 296, 1285-1286.	1.4	3
30	Temporal Processing in the Olfactory System: Can We See a Smell?. Neuron, 2013, 78, 416-432.	8.1	101
31	Clonal Identity Determines Astrocyte Cortical Heterogeneity. Cerebral Cortex, 2013, 23, 1463-1472.	2.9	134
32	Clonal Astrocytic Response to Cortical Injury. PLoS ONE, 2013, 8, e74039.	2.5	67
33	Postnatal characterization of cells in the accessory olfactory bulb of wild type and reeler mice. Frontiers in Neuroanatomy, 2012, 6, 15.	1.7	10
34	Hypothalamus-Olfactory System Crosstalk: Orexin A Immunostaining in Mice. Frontiers in Neuroanatomy, 2012, 6, 44.	1.7	39
35	Dab1 (Disable Homolog-1) Reelin Adaptor Protein Is Overexpressed in the Olfactory Bulb at Early Postnatal Stages. PLoS ONE, 2011, 6, e26673.	2.5	11
36	From the periphery to the brain: Wiring the olfactory system. Translational Neuroscience, 2011, 2, .	1.4	3

#	Article	IF	CITATIONS
37	Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb). Glia, 2011, 59, 278-292.	4.9	24
38	Different astroglia permissivity controls the migration of olfactory bulb interneuron precursors. Glia, 2010, 58, 218-230.	4.9	40
39	A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nature Neuroscience, 2010, 13, 680-689.	14.8	90
40	The Influence of the Environment on Cajal–Retzius Cell Migration. Cerebral Cortex, 2010, 20, 2348-2360.	2.9	21
41	Downregulation of NR3A-Containing NMDARs Is Required for Synapse Maturation and Memory Consolidation. Neuron, 2009, 63, 342-356.	8.1	131
42	Synaptogenesis in the mouse olfactory bulb during glomerulus development. European Journal of Neuroscience, 2008, 27, 2838-2846.	2.6	23
43	Early Telencephalic Migration Topographically Converging in the Olfactory Cortex. Cerebral Cortex, 2008, 18, 1239-1252.	2.9	48
44	Origins and migratory routes of murine Cajalâ€Retzius cells. Journal of Comparative Neurology, 2007, 500, 419-432.	1.6	96
45	Cajal: Lessons on brain development. Brain Research Reviews, 2007, 55, 481-489.	9.0	36
46	Time frame of mitral cell development in the mice olfactory bulb. Journal of Comparative Neurology, 2006, 496, 529-543.	1.6	111
47	Olfactory epithelium influences the orientation of mitral cell dendrites during development. Developmental Dynamics, 2005, 232, 325-335.	1.8	20
48	Origin of the Cortical Layer I in Rodents. Developmental Neuroscience, 2003, 25, 105-115.	2.0	26
49	Tangential Migration in Neocortical Development. Developmental Biology, 2002, 244, 155-169.	2.0	113
50	The olfactory bulb as an independent developmental domain. Cell Death and Differentiation, 2002, 9, 1279-1286.	11.2	54
51	Further studies on cortical tangential migration in wild type and Pax-6 mutant mice. Journal of Neurocytology, 2002, 31, 719-728.	1.5	28
52	Development of the mammillothalamic tract in normal and Pax-6 mutant mice., 2000, 419, 485-504.		30
53	Evidence for intrinsic development of olfactory structures inPax-6 mutant mice. Journal of Comparative Neurology, 2000, 428, 511-526.	1.6	64
54	Central Olfactory Structures in Pax-6 Mutant Micea. Annals of the New York Academy of Sciences, 1998, 855, 83-94.	3.8	32

#	Article	IF	CITATIONS
55	Protein synthesis inhibitors delay transneuronal death in the piriform cortex of young adult rats. Neuroscience, 1997, 79, 463-475.	2.3	17
56	Early onset of the rat olfactory bulb projections. Neuroscience, 1996, 70, 255-266.	2.3	49
57	Early olfactory fiber projections and cell migration into the rat telencephalon. International Journal of Developmental Neuroscience, 1996, 14, 853-865.	1.6	41
58	Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat. Journal of Neuroscience, 1996, 16, 6146-6156.	3.6	382
59	Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period. Journal of Neuroscience, 1995, 15, 5014-5024.	3.6	90
60	Time of Origin and Early Fate of Preplate Cells in the Cerebral Cortex of the Rat. Cerebral Cortex, 1995, 5, 483-493.	2.9	63
61	The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience, 1995, 68, 1167-1178.	2.3	69
62	Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth. Neuron, 1994, 13, 791-803.	8.1	83
63	Pathway and target selection by developing cortical axons agauDennis D.M.^O'Leary. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1992, 17, 15.	0.0	O
64	Neuronal and synaptic composition of the mediodorsal thalamic nucleus in the rat: A light and electron microscopic golgi study. Journal of Comparative Neurology, 1992, 326, 61-81.	1.6	29
65	Neuroglial arrangements in the olfactory glomeruli of the hedgehog. Journal of Comparative Neurology, 1991, 307, 658-674.	1.6	112
66	Morphological Characterization of ALZ-50 Immunoreactive Cells in the Developing Neocortex of Kittens. , $1991, , 193-197.$		1
67	Distribution and morphology of Alz-50-immunoreactive cells in the developing visual cortex of kittens. Journal of Neurocytology, 1990, 19, 662-671.	1.5	22
68	Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): A Golgi study of the intrinsic organization of the superficial layers. Journal of Comparative Neurology, 1990, 301, 243-261.	1.6	37
69	Structure of the nucleus olfactorius anterior of the hedgehog (<i>Erinaceus europaeus</i>). Journal of Comparative Neurology, 1989, 279, 581-600.	1.6	30
70	Connections of the olfactory bulb and nucleus olfactorius anterior in the hedgehog (Erinaceus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 14
71	Vasoactive intestinal polypeptide-immunoreactive neurons in the main olfactory bulb of the hedgehog (Erinaceus europaeus). Neuroscience Letters, 1989, 98, 19-24.	2.1	21
72	Chandelier cells in the auditory cortex of monkey and man: a Golgi study. Experimental Brain Research, 1987, 66, 295-302.	1.5	14

#	Article	IF	CITATIONS
73	Structure of the olfactory bulb of the hedgeho (erinaceus europaeus): Description of cell types in the granular layer. Journal of Comparative Neurology, 1986, 253, 135-152.	1.6	38
74	Neocortical layers I and II of the hedgehog (Erinaceus europaeus). Anatomy and Embryology, 1986, 175, 167-179.	1.5	62
75	Development, morphology and topography of chandeller cells in the auditory cortex of the cat. Developmental Brain Research, 1985, 22, 293-300.	1.7	49