
Michael E Selsted

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5818646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
2	Mammalian defensins in the antimicrobial immune response. Nature Immunology, 2005, 6, 551-557.	14.5	1,070
3	Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunology, 2000, 1, 113-118.	14.5	939
4	A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligation of Two Truncated α-Defensins. Science, 1999, 286, 498-502.	12.6	685
5	Antimicrobial Peptides from Human Platelets. Infection and Immunity, 2002, 70, 6524-6533.	2.2	493
6	Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Science, 1994, 3, 1362-1373.	7.6	349
7	Defensins. European Journal of Haematology, 1990, 44, 1-8.	2.2	282
8	Paneth cell defensins: Endogenous peptide components of intestinal host defense. FASEB Journal, 1996, 10, 1280-1289.	0.5	270
9	The t(8;21) Fusion Product, AML-1–ETO, Associates with C/EBP-α, Inhibits C/EBP-α-Dependent Transcription, and Blocks Granulocytic Differentiation. Molecular and Cellular Biology, 1998, 18, 322-333.	2.3	257
10	Homodimeric Î,-Defensins from Rhesus macaqueLeukocytes. Journal of Biological Chemistry, 2002, 277, 3079-3084.	3.4	186
11	Criterion for Amino Acid Composition of Defensins and Antimicrobial Peptides Based on Geometry of Membrane Destabilization. Journal of the American Chemical Society, 2011, 133, 6720-6727.	13.7	181
12	Defensins are mitogenic for epithelial cells and fibroblasts. Journal of Cellular Physiology, 1993, 155, 408-413.	4.1	179
13	Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. Journal of Leukocyte Biology, 1998, 63, 94-100.	3.3	167
14	Characterization of cDNA clones for human myeloperoxidase: Predicted amino acid sequence and evidence for multiple mRNA species. Nucleic Acids Research, 1987, 15, 2013-2028.	14.5	165
15	Defensins promote fusion and lysis of negatively charged membranes. Protein Science, 1993, 2, 1301-1312.	7.6	160
16	Bilayer Interactions of Indolicidin, a Small Antimicrobial Peptide Rich in Tryptophan, Proline, and Basic Amino Acids. Biophysical Journal, 1997, 72, 794-805.	0.5	157
17	Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1237, 109-114.	2.6	135
18	Critical Role of Lipid Composition in Membrane Permeabilization by Rabbit Neutrophil Defensins. Journal of Biological Chemistry, 1997, 272, 24224-24233.	3.4	135

#	Article	IF	CITATIONS
19	α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. Aids, 2003, 17, F23-F32.	2.2	131
20	Î-Defensins: Cyclic Peptides with Endless Potential. Journal of Biological Chemistry, 2012, 287, 27014-27019.	3.4	127
21	Defensins in granules of phagocytic and non-phagocytic cells. Trends in Cell Biology, 1995, 5, 114-119.	7.9	126
22	Isolation, Characterization, and Antimicrobial Properties of Bovine Oligosaccharide-binding Protein. Journal of Biological Chemistry, 2002, 277, 19658-19664.	3.4	118
23	Solution structures of the rabbit neutrophil defensin NP-5. Journal of Molecular Biology, 1988, 201, 625-636.	4.2	110
24	Rhesus Theta-Defensin Prevents Death in a Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Pulmonary Disease. Journal of Virology, 2009, 83, 11385-11390.	3.4	107
25	Bovine Peptidoglycan Recognition Protein-S: Antimicrobial Activity, Localization, Secretion, and Binding Properties. Journal of Immunology, 2006, 176, 1154-1162.	0.8	104
26	Regulation of gene expression of myeloperoxidase during myeloid differentiation. Journal of Cellular Physiology, 1988, 136, 215-225.	4.1	103
27	θ-Defensins: Cyclic Antimicrobial Peptides Produced by Binary Ligation of Truncated α-Defensins. Current Protein and Peptide Science, 2004, 5, 365-371.	1.4	103
28	Isolation, Synthesis, and Antimicrobial Activities of Naturally Occurring Î,-Defensin Isoforms from Baboon Leukocytes. Infection and Immunity, 2008, 76, 5883-5891.	2.2	96
29	Human Neutrophil-Mediated Nonoxidative Antifungal Activity against Cryptococcus neoformans. Infection and Immunity, 2000, 68, 6257-6264.	2.2	90
30	Structure and Diversity of the Murine Cryptdin Gene Family. Genomics, 1994, 19, 448-453.	2.9	85
31	Essential role of IFN- \hat{I}^3 in T cellâ \in "associated intestinal inflammation. JCI Insight, 2018, 3, .	5.0	83
32	Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochemical Pharmacology, 1988, 37, 951-956.	4.4	81
33	Microbicidal Properties and Cytocidal Selectivity of Rhesus Macaque Theta Defensins. Antimicrobial Agents and Chemotherapy, 2008, 52, 944-953.	3.2	80
34	Characterization of Luminal Paneth Cell α-Defensins in Mouse Small Intestine. Journal of Biological Chemistry, 2000, 275, 33969-33973.	3.4	79
35	Identification of Constituents of Human Neutrophil Azurophil Granules That Mediate Fungistasis against Histoplasma capsulatum. Infection and Immunity, 2000, 68, 5668-5672.	2.2	79
36	Purification and primary structure of murine cryptdin-1, a Paneth cell defensin. FEBS Letters, 1992, 304, 146-148.	2.8	77

#	Article	lF	CITATIONS
37	Rhesus Macaque Theta Defensins Suppress Inflammatory Cytokines and Enhance Survival in Mouse Models of Bacteremic Sepsis. PLoS ONE, 2012, 7, e51337.	2.5	70
38	Cyclic and Acyclic Defensins Inhibit Human Immunodeficiency Virus Type-1 Replication by Different Mechanisms. PLoS ONE, 2010, 5, e9737.	2.5	69
39	Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cellular Immunology, 1988, 114, 104-116.	3.0	63
40	Structure-Activity Determinants in Paneth Cell α-Defensins. Journal of Biological Chemistry, 2004, 279, 11976-11983.	3.4	63
41	A simple and ultrasensitive enzymatic assay for the quantitative determination of lysozyme in the picogram range. Analytical Biochemistry, 1980, 109, 67-70.	2.4	60
42	Isolation and purification of bactericides from human tears. Experimental Eye Research, 1982, 34, 305-318.	2.6	60
43	Cloning and Expression of Bovine Neutrophil β-Defensins. Journal of Biological Chemistry, 1999, 274, 26249-26258.	3.4	59
44	Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagnostic Microbiology and Infectious Disease, 1985, 3, 233-242.	1.8	55
45	Rhesus macaque Î,-defensin isoforms: expression, antimicrobial activities, and demonstration of a prominent role in neutrophil granule microbicidal activities. Journal of Leukocyte Biology, 2010, 89, 283-290.	3.3	54
46	Eosin Y: A reversible stain for detecting electrophoretically resolved protein. Analytical Biochemistry, 1986, 155, 270-274.	2.4	53
47	Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides, 2003, 24, 1795-1805.	2.4	53
48	Peptide Localization and Gene Structure of Cryptdin 4, a Differentially Expressed Mouse Paneth Cell α-Defensin. Infection and Immunity, 1999, 67, 6643-6651.	2.2	53
49	Structure and dynamics of the neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins: Structure, Function and Bioinformatics, 1994, 20, 52-67.	2.6	51
50	Isolation, Characterization, cDNA Cloning, and Antimicrobial Properties of Two Distinct Subfamilies of α-Defensins from Rhesus Macaque Leukocytes. Infection and Immunity, 1999, 67, 6139-6144.	2.2	51
51	Synthesis and characterization of indolicidin, a tryptophanâ€rich antimicrobial peptide from bovine neutrophils *. International Journal of Peptide and Protein Research, 1995, 45, 401-409.	0.1	50
52	Paneth Cell α-Defensins from Rhesus Macaque Small Intestine. Infection and Immunity, 2004, 72, 1470-1478.	2.2	42
53	Rhesus macaque Î,-defensin RTD-1 inhibits proinflammatory cytokine secretion and gene expression by inhibiting the activation of NF-κB and MAPK pathways. Journal of Leukocyte Biology, 2015, 98, 1061-1070.	3.3	40
54	Cycloquest: Identification of Cyclopeptides via Database Search of Their Mass Spectra against Genome Databases. Journal of Proteome Research, 2011, 10, 4505-4512.	3.7	38

#	Article	IF	CITATIONS
55	Killing of Staphylococci by Î, Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes. Antibiotics, 2014, 3, 617-631.	3.7	36
56	Semidry Electroblotting of Peptides and Proteins from Acid–Urea Polyacrylamide Gels. Analytical Biochemistry, 1997, 253, 225-230.	2.4	34
57	Formation and Characterization of a Single Trp-Trp Cross-link in Indolicidin That Confers Protease Stability without Altering Antimicrobial Activity. Journal of Biological Chemistry, 2000, 275, 12017-12022.	3.4	34
58	Alternative Luminal Activation Mechanisms for Paneth Cell α-Defensins. Journal of Biological Chemistry, 2012, 287, 11205-11212.	3.4	34
59	Fungicidal Potency and Mechanisms of Î,-Defensins against Multidrug-Resistant Candida Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	28
60	Macrocyclic Î,-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α–converting enzyme. Journal of Biological Chemistry, 2018, 293, 2725-2734.	3.4	28
61	Antimicrobial properties of the R1 plasmid host killing peptide. Journal of Biotechnology, 2003, 100, 1-12.	3.8	26
62	Killing of oral, gram-negative, facultative bacteria by the rabbit defensin, NP-1. Oral Microbiology and Immunology, 1990, 5, 315-319.	2.8	25
63	High Fidelity Processing and Activation of the Human α-Defensin HNP1 Precursor by Neutrophil Elastase and Proteinase 3. PLoS ONE, 2012, 7, e32469.	2.5	25
64	Microbicidal effects of α- and Î,-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immunity, 2015, 21, 17-29.	2.4	25
65	RTD-1Mimic Containing γPNA Scaffold Exhibits Broad-Spectrum Antibacterial Activities. Journal of the American Chemical Society, 2012, 134, 4041-4044.	13.7	23
66	Synthesis and biological evaluation of non-polyene analogs of amphotericin B. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3177-3182.	2.2	22
67	The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. Journal of Antimicrobial Chemotherapy, 2008, 63, 115-123.	3.0	22
68	Efficacy of Rhesus Theta-Defensin-1 in Experimental Models of Pseudomonas aeruginosa Lung Infection and Inflammation. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	22
69	Rhesus Theta Defensin 1 Promotes Long Term Survival in Systemic Candidiasis by Host Directed Mechanisms. Scientific Reports, 2019, 9, 16905.	3.3	22
70	Rhesus Î,-defensin-1 (RTD-1) exhibits <i>in vitro</i> and <i>in vivo</i> activity against cystic fibrosis strains of <i>Pseudomonas aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 181-188.	3.0	21
71	Rhesus Î,-Defensin-1 Attenuates Endotoxin-induced Acute Lung Injury by Inhibiting Proinflammatory Cytokines and Neutrophil Recruitment. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 310-319.	2.9	19
72	A Pocket Guide to Explorations of the Defensin Field. Current Pharmaceutical Design, 2007, 13, 3061-3064.	1.9	16

#	Article	IF	CITATIONS
73	SDF2L1, a Component of the Endoplasmic Reticulum Chaperone Complex, Differentially Interacts with α-, β-, and Î,-Defensin Propeptides. Journal of Biological Chemistry, 2009, 284, 5602-5609.	3.4	16
74	Hydrophobic Determinants of Î \pm -Defensin Bactericidal Activity. Infection and Immunity, 2014, 82, 2195-2202.	2.2	15
75	Characterization of two crystal forms of neutrophil cationic protein NP2, a naturally occurring broad-spectrum antimicrobial agent from leukocytes. Journal of Molecular Biology, 1984, 178, 783-785.	4.2	14
76	Suppression and resolution of autoimmune arthritis by rhesus Î,-defensin-1, an immunomodulatory macrocyclic peptide. PLoS ONE, 2017, 12, e0187868.	2.5	13
77	RTD-1 therapeutically normalizes synovial gene signatures in rat autoimmune arthritis and suppresses proinflammatory mediators in RA synovial fibroblasts. Physiological Genomics, 2019, 51, 657-667.	2.3	10
78	Host Defense Peptides as Templates for Antifungal Drug Development. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT	Overlock	18 Tf 50 54
79	Human Neutrophil-Mediated Nonoxidative Antifungal Activity against Cryptococcus neoformans. Infection and Immunity, 2000, 68, 6257-6264.	2.2	10
80	HD6 Defensin Nanonets. Science, 2012, 337, 420-421.	12.6	9
81	Synthesis, Structure, and Activities of an Oral Mucosal α-Defensin from Rhesus Macaque. Journal of Biological Chemistry, 2008, 283, 35869-35877.	3.4	7
82	Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions. Antibiotics, 2014, 3, 493-508.	3.7	5
83	α-Defensin expression during myelopoiesis: identification of cis and trans elements that regulate expression of NP-3 in rat promyelocytes. Journal of Leukocyte Biology, 2004, 75, 332-341.	3.3	4
84	Preclinical Pharmacokinetics and Safety of Intravenous RTD-1. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0212521.	3.2	4
85	Enteric defensins. Current Opinion in Gastroenterology, 1997, 13, 494-499.	2.3	3
86	A host-directed macrocyclic peptide therapeutic for MDR gram negative bacterial infections. Scientific Reports, 2021, 11, 23447.	3.3	3
87	Anti-Inflammatory Effects of RTD-1 in a Murine Model of Chronic Pseudomonas aeruginosa Lung Infection: Inhibition of NF-κB, Inflammasome Gene Expression, and Pro-IL-1κ Biosynthesis. Antibiotics, 2021, 10, 1043.	3.7	2
88	Olive baboon Î,â€defensins. FASEB Journal, 2008, 22, 673.11.	0.5	1
89	Defensins. Clinical Immunology Newsletter, 1987, 8, 134-137.	0.1	0
90	In vitro activity of naturally occurring peptides (defensins) against Listeria monocytogenes. Cadernos De Saude Publica, 1994, 10, 440-445.	1.0	0

#	Article	IF	CITATIONS
91	Antimicrobial Peptide Effectors of Small Intestinal Innate Immunity. , 0, , 191-221.		Ο