Werner Howad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581857/publications.pdf

Version: 2024-02-01

32 2,097 20 29
papers citations h-index g-index

33 33 1492 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9891-9896.	7.1	473
2	Mapping With a Few Plants: Using Selective Mapping for Microsatellite Saturation of the Prunus Reference Map. Genetics, 2005, 171, 1305-1309.	2.9	180
3	Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics, 2010, 11, 69.	2.7	139
4	Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Molecular Ecology Notes, 2004, 4, 163-166.	1.7	137
5	Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid?location of root-knot nematode resistance genes. Theoretical and Applied Genetics, 2004, 109, 827-838.	3.6	109
6	Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant Journal, 2020, 101, 455-472.	5.7	94
7	Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding, 2007, 126, 310-318.	1.9	93
8	Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes, 2005, 5, 531-535.	1.7	84
9	A framework physical map for peach, a model Rosaceae species. Tree Genetics and Genomes, 2008, 4, 745-756.	1.6	72
10	Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica, 2015, 205, 627-636.	1.2	72
11	Candidate gene database and transcript map for peach, a model species for fruit trees. Theoretical and Applied Genetics, 2005, 110, 1419-1428.	3.6	71
12	Genomic characterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genomics, 2008, 9, 543.	2.8	61
13	Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics, 2009, 10, 562.	2.8	61
14	Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding, 2011, 28, 667-682.	2.1	53
15	Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica, 2013, 190, 279-288.	1.2	53
16	Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010, 6, 237-245.	1.6	49
17	A first insight into peach [Prunus persica (L.) Batsch] SNP variability. Tree Genetics and Genomes, 2012, 8, 1359-1369.	1.6	39
18	High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Horticulture Research, 2015, 2, 15016.	6.3	35

#	Article	IF	Citations
19	Survey of over 4, 500 monumental olive trees preserved on-farm in the northeast Iberian Peninsula, their genotyping and characterization. Scientia Horticulturae, 2018, 231, 253-264.	3.6	34
20	Development of "universal―gene-specific markers from Malus spp. cDNA sequences, their mapping and use in synteny studies within Rosaceae. Tree Genetics and Genomes, 2009, 5, 133-145.	1.6	30
21	Almond., 2007,, 229-242.		27
22	Marker-assisted introgression (MAI) of almond genes into the peach background: a fast method to mine and integrate novel variation from exotic sources in long intergeneration species. Tree Genetics and Genomes, 2016, 12, 1.	1.6	21
23	Nuclear genes from Tx CMS maintainer lines are unable to maintain atp6 RNA editing in any anther cell-type in the Sorghum bicolor A3 cytoplasm. Current Genetics, 1999, 36, 62-68.	1.7	19
24	Cell Wall Polysaccharide Chemistry of Peach Genotypes with Contrasted Textures and Other Fruit Traits. Journal of Agricultural and Food Chemistry, 2012, 60, 6594-6605.	5.2	19
25	Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree Genetics and Genomes, $2011, 7, 629-639$.	1.6	18
26	Mutations at specificatp6codons which cause human mitochondrial diseases also lead to male sterility in a plant. FEBS Letters, 1998, 441, 159-160.	2.8	14
27	Characterization of Japanese Plum (Prunus salicina) PsMYB10 Alleles Reveals Structural Variation and Polymorphisms Correlating With Fruit Skin Color. Frontiers in Plant Science, 2021, 12, 655267.	3.6	14
28	Mitochondrial RNA editing is sequence specific and independent of transcript abundance in Sorghum bicolor. Current Genetics, 1996, 30, 186-189.	1.7	10
29	Sequence analysis and transcript processing of the mitochondrial nad3-rps12 genes from Sorghum bicolor. Plant Science, 1997, 129, 65-68.	3.6	5
30	Tri-/Hexanucleotide Microsatellite Markers in Peach Derived from Enriched Genomic Libraries and Their Application in Rosaceae. Breeding Science, 2007, 57, 289-296.	1.9	4
31	Molecular Linkage Maps. , 2012, , 76-104.		1
32	Construction of a collection of introgression lines of $\hat{a}\in \mathbb{C}$ Texas $\hat{a}\in \mathbb{C}$ -almond DNA fragments in the $\hat{a}\in \mathbb{C}$ Earlygold $\hat{a}\in \mathbb{C}$ -peach genetic background. Horticulture Research, $0,$	6.3	1