
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817457/publications.pdf Version: 2024-02-01

*Мем*ли III

#	Article	IF	CITATIONS
1	Identifying Carbon-Degrading Enzyme Activities in Association with Soil Organic Carbon Accumulation Under Land-Use Changes. Ecosystems, 2022, 25, 1219-1233.	3.4	7
2	Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils. Environmental Pollution, 2022, 293, 118611.	7.5	6
3	Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Frontiers in Microbiology, 2022, 13, 820920.	3.5	3
4	Geographic Dispersal Limitation Dominated Assembly Processes of Bacterial Communities on Microplastics Compared to Water and Sediment. Applied and Environmental Microbiology, 2022, 88, .	3.1	7
5	Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 2021, 8, nwaa296.	9.5	132
6	Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghaiâ€Tibet Plateau. Molecular Ecology, 2021, 30, 2390-2403.	3.9	85
7	Effects of tetracycline on nitrogen and carbon cycling rates and microbial abundance in sediments with and without biochar amendment. Chemosphere, 2021, 270, 129509.	8.2	13
8	Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density. Journal of Hazardous Materials, 2021, 411, 125178.	12.4	107
9	Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Science of the Total Environment, 2021, 773, 145643.	8.0	130
10	Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community. Water Research, 2021, 202, 117449.	11.3	29
11	The Diversity and Community Assembly Process of Wetland Plants from Lakeshores on the Qinghai-Tibetan Plateau. Diversity, 2021, 13, 685.	1.7	4
12	C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands. Environmental Science and Pollution Research, 2020, 27, 1024-1034.	5.3	25
13	Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma, 2020, 361, 114015.	5.1	36
14	Interactions between arbuscular mycorrhizal fungi and soil properties jointly influence plant C, N, and P stoichiometry in West Lake, Hangzhou. RSC Advances, 2020, 10, 39943-39953.	3.6	3
15	Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Research, 2020, 184, 116209.	11.3	195
16	Asymmetric response of soil methane uptake rate to land degradation and restoration: Data synthesis. Global Change Biology, 2020, 26, 6581-6593.	9.5	22
17	Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology, 2020, 104, 6501-6511.	3.6	217
18	Seeking the hotspots of nitrogen removal: A comparison of sediment denitrification rate and denitrifier abundance among wetland types with different hydrological conditions. Science of the Total Environment, 2020, 737, 140253.	8.0	17

#	Article	IF	CITATIONS
19	Environmental Factors, More Than Spatial Distance, Explain Community Structure of Soil Ammonia-Oxidizers in Wetlands on the Qinghai–Tibetan Plateau. Microorganisms, 2020, 8, 933.	3.6	12
20	Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degradation and Development, 2020, 31, 1792-1802.	3.9	33
21	Environmental Factors and Microbial Diversity and Abundance Jointly Regulate Soil Nitrogen and Carbon Biogeochemical Processes in Tibetan Wetlands. Environmental Science & Technology, 2020, 54, 3267-3277.	10.0	75
22	The roles of environmental variation and spatial distance in explaining diversity and biogeography of soil denitrifying communities in remote Tibetan wetlands. FEMS Microbiology Ecology, 2020, 96, .	2.7	17
23	Stoichiometric control on riparian wetland carbon and nutrient dynamics under different land uses. Science of the Total Environment, 2019, 697, 134127.	8.0	10
24	Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. Environment International, 2019, 127, 371-380.	10.0	98
25	Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. Journal of Hazardous Materials, 2019, 361, 283-293.	12.4	80
26	Does hydrological reconnection enhance nitrogen cycling rates in the lakeshore wetlands of a eutrophic lake?. Ecological Indicators, 2019, 96, 241-249.	6.3	8
27	Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environment International, 2019, 123, 79-86.	10.0	305
28	Spatio-temporal dynamics, drivers and potential sources of heavy metal pollution in riparian soils along a 600â€ ⁻ kilometre stream gradient in Central China. Science of the Total Environment, 2019, 651, 1935-1945.	8.0	56
29	Environmental factors, but not abundance and diversity of nitrifying microorganisms, explain sediment nitrification rates in Yangtze lakes. RSC Advances, 2018, 8, 1875-1883.	3.6	14
30	Spatial and Seasonal Dynamics of Water Quality, Sediment Properties and Submerged Vegetation in a Eutrophic Lake after Ten Years of Ecological Restoration. Wetlands, 2018, 38, 1147-1157.	1.5	4
31	Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake. Science of the Total Environment, 2018, 616-617, 899-907.	8.0	49
32	Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Science of the Total Environment, 2018, 616-617, 978-987.	8.0	69
33	Soil aggregate-associated heavy metals subjected to different types of land use in subtropical China. Clobal Ecology and Conservation, 2018, 16, e00465.	2.1	20
34	Influence of Differ P Enrichment Frequency on Plant Growth and Plant C:N:P in a P-Limited Subtropical Lake Wetland, China. Frontiers in Plant Science, 2018, 9, 1608.	3.6	2
35	Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea. Water (Switzerland), 2018, 10, 50.	2.7	17
36	Soil aggregate-associated organic carbon dynamics subjected to different types of land use: Evidence from 13C natural abundance. Ecological Engineering, 2018, 122, 295-302.	3.6	40

#	Article	IF	CITATIONS
37	Has Submerged Vegetation Loss Altered Sediment Denitrification, N ₂ O Production, and Denitrifying Microbial Communities in Subtropical Lakes?. Global Biogeochemical Cycles, 2018, 32, 1195-1207.	4.9	15
38	SOIL SEED BANK AND ITS RELATIONSHIP TO THE ABOVE-GROUND VEGETATION IN GRAZED AND UNGRAZED OXBOW WETLANDS OF THE YANGTZE RIVER, CHINA. Environmental Engineering and Management Journal, 2018, 17, 959-967.	0.6	0
39	Revegetation affects soil denitrifying communities in a riparian ecotone. Ecological Engineering, 2017, 103, 256-263.	3.6	19
40	Edaphic Conditions Regulate Denitrification Directly and Indirectly by Altering Denitrifier Abundance in Wetlands along the Han River, China. Environmental Science & Technology, 2017, 51, 5483-5491.	10.0	79
41	Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere, 2017, 178, 19-25.	8.2	114
42	Multi-scale factors affecting composition, diversity, and abundance of sediment denitrifying microorganisms in Yangtze lakes. Applied Microbiology and Biotechnology, 2017, 101, 8015-8027.	3.6	19
43	Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2017, 171, 17-24.	4.1	31
44	The effects of climate, catchment land use and local factors on the abundance and community structure of sediment ammonia-oxidizing microorganisms in Yangtze lakes. AMB Express, 2017, 7, 173.	3.0	9
45	Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environmental Science and Pollution Research, 2017, 24, 436-444.	5.3	60
46	Within-lake variability and environmental controls of sediment denitrification and associated N2O production in a shallow eutrophic lake. Ecological Engineering, 2016, 97, 251-257.	3.6	22
47	Heavy metal concentrations in riparian soils along the Han River, China: The importance of soil properties, topography and upland land use. Ecological Engineering, 2016, 97, 545-552.	3.6	60
48	Quantitative impacts of population on river water quality in the Jinshui River basin of the South Qinling Mts., China. Environmental Earth Sciences, 2016, 75, 1.	2.7	19
49	Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide production of riparian zones in the Han River Basin, China. Agriculture, Ecosystems and Environment, 2016, 216, 147-154.	5.3	48
50	Sediment denitrification and nitrous oxide production in Chinese plateau lakes with varying watershed land uses. Biogeochemistry, 2015, 123, 379-390.	3.5	28
51	Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecological Engineering, 2015, 83, 437-443.	3.6	66
52	Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds. Environmental Science and Pollution Research, 2015, 22, 18750-18758.	5.3	5
53	Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China. Science of the Total Environment, 2015, 517, 76-85.	8.0	53
54	Shoreline Vegetation in the Danjiangkou Reservoir: Characteristics, Related Factors, and Differences with Adjacent Riverine Wetlands. Clean - Soil, Air, Water, 2014, 42, 1014-1021.	1.1	6

#	Article	IF	CITATIONS
55	Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicology and Environmental Safety, 2014, 107, 200-206.	6.0	98
56	Subtropical reservoir shorelines have reduced plant species and functional richness compared with adjacent riparian wetlands. Environmental Research Letters, 2013, 8, 044007.	5.2	30
57	Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors. Environmental Science and Pollution Research, 2012, 19, 858-870.	5.3	91
58	Influences of watershed landscape composition and configuration on lakeâ€water quality in the Yangtze River basin of China. Hydrological Processes, 2012, 26, 570-578.	2.6	64
59	Influence of Vegetation Characteristics on Soil Denitrification in Shoreline Wetlands of the Danjiangkou Reservoir in China. Clean - Soil, Air, Water, 2011, 39, 109-115.	1.1	42
60	Effects of Watershed Land Use and Lake Morphometry on the Trophic State of Chinese Lakes: Implications for Eutrophication Control. Clean - Soil, Air, Water, 2011, 39, 35-42.	1.1	43
61	Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia, 2010, 644, 289-299.	2.0	107
62	Spatio-temporal dynamics of nutrients in the upper Han River basin, China. Journal of Hazardous Materials, 2009, 162, 1340-1346.	12.4	102
63	Seed banks of a river–reservoir wetland system and their implications for vegetation development. Aquatic Botany, 2009, 90, 7-12.	1.6	37
64	Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena, 2008, 75, 216-222.	5.0	234